当前位置: 首页 > news >正文

【SVM smote】MAP - Charting Student Math Misunderstandings

针对数据不平衡问题,用调整类别权重的方式来处理数据不平衡问题,同时使用支持向量机(SVM)模型进行训练。

我们通过使用 SMOTE(Synthetic Minority Over-sampling Technique)进行过采样,增加少数类别的样本。。

import pandas as pd
import string
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
from imblearn.over_sampling import SMOTE# Step 1: Load the dataset
file_path = '/content/train.csv'  # 修改为实际文件路径
data = pd.read_csv(file_path)# Step 2: Clean the student explanation text (remove punctuation and lower case)
def clean_text(text):text = text.lower()  # Convert to lower casetext = ''.join([char for char in text if char not in string.punctuation])  # Remove punctuationreturn text# Apply the cleaning function to the 'StudentExplanation' column
data['cleaned_explanation'] = data['StudentExplanation'].apply(clean_text)# Step 3: Feature extraction using TF-IDF
vectorizer = TfidfVectorizer(stop_words='english', max_features=5000)
X = vectorizer.fit_transform(data['cleaned_explanation'])# Step 4: Prepare labels (Misconception column)
# We will predict if the explanation contains a misconception or not
data['Misconception'] = data['Misconception'].fillna('No_Misconception')# Convert labels to binary: 'No_Misconception' -> 0, any other label -> 1
y = data['Misconception'].apply(lambda x: 0 if x == 'No_Misconception' else 1)# Step 5: Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Step 16: Apply SMOTE for over-sampling the minority class
smote = SMOTE(random_state=42)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)# Step 7: Train an SVM model with the resampled data
svm_model = SVC(kernel='linear', class_weight='balanced', random_state=42)
svm_model.fit(X_train_resampled, y_train_resampled)# Step 8: Make predictions
y_pred_svm = svm_model.predict(X_test)# Step 9: Evaluate the model
print(classification_report(y_test, y_pred_svm))# Step 10: Plot confusion matrix
cm_weighted = confusion_matrix(y_test, y_pred_svm)# Use ConfusionMatrixDisplay to display the confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm_weighted, display_labels=['No Misconception', 'Misconception'])
disp.plot(cmap=plt.cm.Blues)
plt.title('SVM Model with Balanced Class Weight Confusion Matrix')
plt.show()
 precision    recall  f1-score   support0       0.91      0.75      0.82      52771       0.56      0.81      0.66      2063accuracy                           0.77      7340macro avg       0.73      0.78      0.74      7340
weighted avg       0.81      0.77      0.78      7340

在这里插入图片描述

http://www.lryc.cn/news/593689.html

相关文章:

  • sqli-labs靶场通关笔记:第32-33关 宽字节注入
  • Kotlin方差
  • 1 渗透基础
  • ros2高级篇之高可用启动文件及配置编写
  • Spring AI 1.0版本 + 千问大模型之文本对话
  • node.js学习笔记1
  • 【数据类型与变量】
  • MySQL——约束类型
  • Springboot项目的搭建方式5种
  • 使用DataGrip连接安装在Linux上的Redis
  • Python+大模型 day02
  • 辛普森悖论
  • 使用看门狗实现复位
  • 1.初始化
  • Web开发 03
  • 双目摄像头品牌
  • 板子 5.29--7.19
  • 【科研绘图系列】R语言绘制显著性标记的热图
  • 【黄山派-SF32LB52】—硬件原理图学习笔记
  • 商业秘密视域下计算机软件的多重保护困境
  • 计算机网络:(十)虚拟专用网 VPN 和网络地址转换 NAT
  • Java多线程基础详解:从实现到线程安全
  • 6. 装饰器模式
  • ROS2 视频采集节点实现
  • Redis常见线上问题
  • 基于LSTM的时间序列到时间序列的回归模拟
  • Keepalived 监听服务切换与运维指南
  • C study notes[1]
  • C语言:20250719笔记
  • CentOS 清理技巧