当前位置: 首页 > news >正文

嵌入式学习-PyTorch(9)-day25

进入尾声,一个完整的模型训练 ,点亮的第一个led

#自己注释版
import torch
import torchvision.datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *
from torch.utils.data import DataLoader#定义训练的设备
device= torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#准备数据集
train_data = torchvision.datasets.CIFAR10(root='./data_CIF',train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root='./data_CIF',train=False,transform=torchvision.transforms.ToTensor(),download=True)#获得数据集长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度为 : {train_data_size}")
print(f"测试数据集的长度为 : {test_data_size}")#利用 Dataloader 来加载数据集
train_loader =DataLoader(dataset=train_data,batch_size=64)
test_loader =DataLoader(dataset=test_data,batch_size=64)#搭建神经网络
class Tudui(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(in_features=64*4*4,out_features=64),nn.Linear(in_features=64,out_features=10),)def forward(self,x):x = self.model(x)return x#创建网络模型
tudui = Tudui()
#GPU
tudui.to(device)#损失函数
loss_fn = nn.CrossEntropyLoss()
#GPU
loss_fn.to(device)#优化器
# learning_rate = 0.001
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate)#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epoch = 10#添加tensorboard
writer = SummaryWriter("./logs_train")start_time = time.time()
for i in range(epoch):print(f"---------第{i+1}轮训练开始---------")#训练步骤开始tudui.train()       #当网络中有特定层的时候有用for data in train_loader:imgs, targets = data#GPUimgs.to(device)targets.to(device)output = tudui(imgs)loss = loss_fn(output,targets)      #算出误差# 优化器优化模型#梯度置零optimizer.zero_grad()#反向传播loss.backward()#更新参数optimizer.step()#展示输出total_train_step += 1if total_train_step % 100 == 0:end_time = time.time()print(f"训练次数:{total_train_step} 花费时间:{end_time - start_time}")print(f"训练次数:{total_train_step},Loss:{loss.item()}")writer.add_scalar("train_loss",loss.item(),total_train_step)#测试步骤开始tudui.eval()        #当网络中有特定层的时候有用total_test_loss = 0#整体的正确个数total_accuracy = 0#取消梯度with torch.no_grad():for data in test_loader:imgs, targets = data#GPUimgs.to(device)targets.to(device)output = tudui(imgs)loss = loss_fn(output,targets)  #计算出误差#构建一些指标total_accuracy += (output.argmax(1) == targets).sum().item() #统计每一批预测的结果和真实结果相等的个数total_test_loss += loss.item()print(f"整体测试集上的loss:{total_test_loss}")print(f"整体测试集上的正确率:{total_accuracy/test_data_size}")print(f"整体测试集上的正确数:{total_accuracy}")#写入tensorboardwriter.add_scalar("test_loss",total_test_loss,total_test_step)writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)total_test_step += 1#保存模型torch.save(tudui.state_dict(),f"./tudui{i}.pth")print("模型已保存")writer.close()

#ai注释版
import torch
import torchvision.datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import time
from torch.utils.data import DataLoader# ----------------- 一、设备 -----------------
# 判断是否有可用的GPU,没有则用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# ----------------- 二、准备数据 -----------------
# 下载CIFAR10训练集
train_data = torchvision.datasets.CIFAR10(root='./data_CIF', train=True, transform=torchvision.transforms.ToTensor(), download=True)
# 下载CIFAR10测试集
test_data = torchvision.datasets.CIFAR10(root='./data_CIF', train=False, transform=torchvision.transforms.ToTensor(), download=True)# 打印训练集和测试集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度为 : {train_data_size}")
print(f"测试数据集的长度为 : {test_data_size}")# 使用Dataloader封装数据,方便批量加载
train_loader = DataLoader(dataset=train_data, batch_size=64)
test_loader = DataLoader(dataset=test_data, batch_size=64)# ----------------- 三、搭建神经网络 -----------------
class Tudui(nn.Module):def __init__(self):super().__init__()# 搭建一个简单的卷积神经网络self.model = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2), # [b,3,32,32] -> [b,32,32,32]nn.MaxPool2d(2),  # [b,32,32,32] -> [b,32,16,16]nn.Conv2d(32, 32, 5, 1, 2), # -> [b,32,16,16]nn.MaxPool2d(2), # -> [b,32,8,8]nn.Conv2d(32, 64, 5, 1, 2), # -> [b,64,8,8]nn.MaxPool2d(2), # -> [b,64,4,4]nn.Flatten(),  # 拉平成一维 [b,64*4*4]nn.Linear(64*4*4, 64),nn.Linear(64, 10)  # CIFAR10 一共10类)def forward(self, x):return self.model(x)# 创建模型对象
tudui = Tudui()
tudui.to(device)  # 移动到GPU/CPU# ----------------- 四、定义损失函数和优化器 -----------------
# 交叉熵损失函数(多分类标准选择)
loss_fn = nn.CrossEntropyLoss().to(device)# SGD随机梯度下降优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)# ----------------- 五、训练准备 -----------------
total_train_step = 0   # 总训练次数
total_test_step = 0    # 总测试次数
epoch = 10             # 训练轮数# TensorBoard日志工具
writer = SummaryWriter("./logs_train")start_time = time.time()  # 记录起始时间# ----------------- 六、开始训练 -----------------
for i in range(epoch):print(f"---------第{i+1}轮训练开始---------")# 训练模式(启用BN、Dropout等)tudui.train()for data in train_loader:imgs, targets = dataimgs, targets = imgs.to(device), targets.to(device)# 前向传播output = tudui(imgs)# 计算损失loss = loss_fn(output, targets)# 优化器梯度清零optimizer.zero_grad()# 反向传播,自动求导loss.backward()# 更新参数optimizer.step()total_train_step += 1# 每100次打印一次训练lossif total_train_step % 100 == 0:end_time = time.time()print(f"训练次数:{total_train_step} 花费时间:{end_time - start_time}")print(f"训练次数:{total_train_step}, Loss:{loss.item()}")# 写入TensorBoardwriter.add_scalar("train_loss", loss.item(), total_train_step)# ----------------- 七、测试步骤 -----------------tudui.eval()  # 切换到测试模式(停用BN、Dropout)total_test_loss = 0total_accuracy = 0# 不计算梯度,节省显存,加快推理with torch.no_grad():for data in test_loader:imgs, targets = dataimgs, targets = imgs.to(device), targets.to(device)output = tudui(imgs)loss = loss_fn(output, targets)total_test_loss += loss.item()# 预测正确个数统计total_accuracy += (output.argmax(1) == targets).sum().item()print(f"整体测试集上的Loss: {total_test_loss}")print(f"整体测试集上的正确率: {total_accuracy / test_data_size}")print(f"整体测试集上的正确数: {total_accuracy}")# 写入TensorBoard(测试loss和准确率)writer.add_scalar("test_loss", total_test_loss, total_test_step)writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)total_test_step += 1# ----------------- 八、保存模型 -----------------torch.save(tudui.state_dict(), f"./tudui{i}.pth")print("模型已保存")# ----------------- 九、关闭TensorBoard -----------------
writer.close()

 结果图

 忘记清除历史数据了

 

 完整的模型验证套路

import torch
import torchvision.transforms
from PIL import Image
from torch import nnimage_path = "./images/微信截图_20250719220956.png"
image = Image.open(image_path).convert('RGB')
print(type(image))transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
image = transform(image)
print(type(image))#搭建神经网络
class Tudui(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(in_features=64*4*4,out_features=64),nn.Linear(in_features=64,out_features=10),)def forward(self,x):x = self.model(x)return xmodel = Tudui()
model.load_state_dict(torch.load("tudui9.pth"))
image = torch.reshape(image, (1,3,32,32))
model.eval()
with torch.no_grad():output = model(image)
print(output)
print(output.argmax(1))

5确实是狗,验证成功 

http://www.lryc.cn/news/593115.html

相关文章:

  • Tomcat 生产 40 条军规:容量规划、调优、故障演练与安全加固
  • Linux:lvs集群技术
  • steam游戏搬砖项目超完整版实操分享
  • 6-大语言模型—预训练:数据处理
  • HOT100——排序篇Leetcode215. 数组中的第K个最大元素
  • LVS工作模式和算法的总结
  • 相角补偿全通滤波器设计:相位均衡(0~350Hz,15°超前)
  • 《YOLOv13魔术师专栏》全景指南:从理论到工业级实战
  • 计算机网络——IPv4(25王道最新版)
  • python的第三方库的基本运用
  • RISC采用的3种流水技术的功能和区别分析
  • Xss-labs 1-8以及利用python自动sq8注入
  • 定时器与间歇函数
  • 【C++】入门阶段
  • 时序数据库选型实战:Apache IoTDB技术深度解析
  • UniApp 优化实践:使用常量统一管理本地存储 Key,提升可维护性
  • 一站式PDF转Markdown解决方案PDF3MD
  • MyBatis动态SQL实战:告别硬编码,拥抱智能SQL生成
  • 【iOS】编译和链接、动静态库及dyld的简单学习
  • JMeter 元件使用详解
  • k8s快速部署(亲测无坑)
  • Jmeter系列(7)-线程组
  • uniapp相关地图 API调用
  • 考研复习-数据结构-第七章-查找
  • 考研408《计算机组成原理》复习笔记,第三章(5)——磁盘存储器
  • UniApp 自定义导航栏:解决安全区域适配问题的完整实践
  • 基于springboot的考研互助小程序
  • 如何解决Flink CDC同步时间类型字段8小时时间差的问题,以MySQL为例
  • 我做的基础服务项目,是如何实现 API 安全与限流的(短信、邮件、文件上传、钉钉通知)
  • lazyvim配置