多维傅里叶变换性质与计算
题目
问题7.
(a) 证明多维傅里叶变换具有与问题1中相同的性质(参见小节5.2.5)。
(b) 证明如果多维函数 f f f 具有旋转对称性(即对所有正交变换 Q Q Q,有 f(Qx)=f(x) f(Qx) = f(x) f(Qx)=f(x)),那么其傅里叶变换 f^ \hat{f} f^ 也具有旋转对称性(反之亦然)。
注:等价地,f f f 具有旋转对称性当且仅当 f(x) f(x) f(x) 仅依赖于 ∣x∣ |x| ∣x∣。
问题8. 求以下多维函数的傅里叶变换:
(a) f(x)={1∣x∣≤a,0∣x∣>a; f(x) = \begin{cases}
1 & |x| \leq a, \\
0 & |x| > a;
\end{cases} f(x)={10∣x∣≤a,∣x∣>a;
(b) f(x)={a−∣x∣∣x∣≤a,0∣x∣>a; f(x) = \begin{cases}
a - |x| & |x| \leq a, \\
0 & |x| > a;
\end{cases} f(x)={a−∣x∣0∣x∣≤a,∣x∣>a;
© f(x)={(a−∣x∣)2∣x∣≤a,0∣x∣>a; f(x) = \begin{cases}
(a - |x|)^2 & |x| \leq a, \\
0 & |x| > a;
\end{cases} f(x)={(a−∣x∣)20∣x∣≤a,∣x∣>a;
(d) f(x)={a2−∣x∣2∣x∣≤a,0∣x∣>a; f(x) = \begin{cases}
a^2 - |x|^2 & |x| \leq a, \\
0 & |x| > a;
\end{cases} f(x)={a2−∣x∣20∣x∣≤a,∣x∣>a;
(e) f(x)=e−α∣x∣; f(x) = e^{-\alpha |x|}; f(x)=e−α∣x∣;
(f) f(x)=∣x∣e−α∣x∣; f(x) = |x| e^{-\alpha |x|}; f(x)=∣x∣e−α∣x∣;
(g) f(x)=∣x∣2e−α∣x∣. f(x) = |x|^2 e^{-\alpha |x|}. f(x)=∣x∣2e−α∣x∣.
提示:使用问题7(b),观察到我们只需要计算 f^(0,…,0,k) \hat{f}(0, \ldots, 0, k) f^(0,…,0,k)(即频率空间中沿最后一个坐标轴的值),并使用适当的坐标系(如 n=2 n = 2 n=2 时用极坐标,n=3 n = 3 n=3 时用球坐标等)。注意:此问题可针对 n=2 n = 2 n=2、n=3 n = 3 n=3 或任意 n≥2 n \geq 2 n≥2 求解。
解决问题
问题7(a):证明多维傅里叶变换的性质
多维傅里叶变换在 Rn \mathbb{R}^n Rn 上定义为:
f^(ξ)=∫Rnf(x)e−2πix⋅ξdx,其中x⋅ξ=∑j=1nxjξj.
\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx, \quad \text{其中} \quad x \cdot \xi = \sum_{j=1}^n x_j \xi_j.
f^(ξ)=∫Rnf(x)e−2πix⋅ξdx,其中x⋅ξ=j=1∑nxjξj.
问题1(未提供)假设涉及一维傅里叶变换的标准性质,如线性、位移、调制、缩放、共轭、卷积等。这些性质在多维情况下类似成立,证明方法类似一维,通过积分变换直接验证。以下是关键性质及简要证明:
-
线性:F{af+bg}=aF{f}+bF{g} \mathcal{F}\{a f + b g\} = a \mathcal{F}\{f\} + b \mathcal{F}\{g\} F{af+bg}=aF{f}+bF{g}
证明:
F{af+bg}(ξ)=∫Rn[af(x)+bg(x)]e−2πix⋅ξdx=a∫Rnf(x)e−2πix⋅ξdx+b∫Rng(x)e−2πix⋅ξdx=af^(ξ)+bg^(ξ). \mathcal{F}\{a f + b g\}(\xi) = \int_{\mathbb{R}^n} [a f(x) + b g(x)] e^{-2\pi i x \cdot \xi} dx = a \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx + b \int_{\mathbb{R}^n} g(x) e^{-2\pi i x \cdot \xi} dx = a \hat{f}(\xi) + b \hat{g}(\xi). F{af+bg}(ξ)=∫Rn[af(x)+bg(x)]e−2πix⋅ξdx=a∫Rnf(x)e−2πix⋅ξdx+b∫Rng(x)e−2πix⋅ξdx=af^(ξ)+bg^(ξ). -
位移:若 g(x)=f(x−x0) g(x) = f(x - x_0) g(x)=f(x−x0),则 g^(ξ)=e−2πix0⋅ξf^(ξ) \hat{g}(\xi) = e^{-2\pi i x_0 \cdot \xi} \hat{f}(\xi) g^(ξ)=e−2πix0⋅ξf^(ξ)
证明:
令 y=x−x0 y = x - x_0 y=x−x0,则 dx=dy dx = dy dx=dy,
g^(ξ)=∫Rnf(x−x0)e−2πix⋅ξdx=∫Rnf(y)e−2πi(y+x0)⋅ξdy=e−2πix0⋅ξ∫Rnf(y)e−2πiy⋅ξdy=e−2πix0⋅ξf^(ξ). \hat{g}(\xi) = \int_{\mathbb{R}^n} f(x - x_0) e^{-2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^n} f(y) e^{-2\pi i (y + x_0) \cdot \xi} dy = e^{-2\pi i x_0 \cdot \xi} \int_{\mathbb{R}^n} f(y) e^{-2\pi i y \cdot \xi} dy = e^{-2\pi i x_0 \cdot \xi} \hat{f}(\xi). g^(ξ)=∫Rnf(x−x0)e−2πix⋅ξdx=∫Rnf(y)e−2πi(y+x0)⋅ξdy=e−2πix0⋅ξ∫Rnf(y)e−2πiy⋅ξdy=e−2πix0⋅ξf^(ξ). -
调制:若 g(x)=e2πix⋅ξ0f(x) g(x) = e^{2\pi i x \cdot \xi_0} f(x) g(x)=e2πix⋅ξ0f(x),则 g^(ξ)=f^(ξ−ξ0) \hat{g}(\xi) = \hat{f}(\xi - \xi_0) g^(ξ)=f^(ξ−ξ0)
证明:
g^(ξ)=∫Rne2πix⋅ξ0f(x)e−2πix⋅ξdx=∫Rnf(x)e−2πix⋅(ξ−ξ0)dx=f^(ξ−ξ0). \hat{g}(\xi) = \int_{\mathbb{R}^n} e^{2\pi i x \cdot \xi_0} f(x) e^{-2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot (\xi - \xi_0)} dx = \hat{f}(\xi - \xi_0). g^(ξ)=∫Rne2πix⋅ξ0f(x)e−2πix⋅ξdx=∫Rnf(x)e−2πix⋅(ξ−ξ0)dx=f^(ξ−ξ0). -
缩放:若 g(x)=f(ax) g(x) = f(a x) g(x)=f(ax)(a≠0 a \neq 0 a=0 实数),则 g^(ξ)=∣a∣−nf^(a−1ξ) \hat{g}(\xi) = |a|^{-n} \hat{f}(a^{-1} \xi) g^(ξ)=∣a∣−nf^(a−1ξ)
证明:
令 y=ax y = a x y=ax,则 dx=∣a∣−ndy dx = |a|^{-n} dy dx=∣a∣−ndy,
g^(ξ)=∫Rnf(ax)e−2πix⋅ξdx=∫Rnf(y)e−2πi(a−1y)⋅ξ∣a∣−ndy=∣a∣−n∫Rnf(y)e−2πiy⋅(a−1ξ)dy=∣a∣−nf^(a−1ξ). \hat{g}(\xi) = \int_{\mathbb{R}^n} f(a x) e^{-2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^n} f(y) e^{-2\pi i (a^{-1} y) \cdot \xi} |a|^{-n} dy = |a|^{-n} \int_{\mathbb{R}^n} f(y) e^{-2\pi i y \cdot (a^{-1} \xi)} dy = |a|^{-n} \hat{f}(a^{-1} \xi). g^(ξ)=∫Rnf(ax)e−2πix⋅ξdx=∫Rnf(y)e−2πi(a−1y)⋅ξ∣a∣−ndy=∣a∣−n∫Rnf(y)e−2πiy⋅(a−1ξ)dy=∣a∣−nf^(a−1ξ). -
卷积:F{f∗g}=F{f}F{g} \mathcal{F}\{f * g\} = \mathcal{F}\{f\} \mathcal{F}\{g\} F{f∗g}=F{f}F{g},其中 (f∗g)(x)=∫Rnf(y)g(x−y)dy (f * g)(x) = \int_{\mathbb{R}^n} f(y) g(x - y) dy (f∗g)(x)=∫Rnf(y)g(x−y)dy
证明:
F{f∗g}(ξ)=∫Rn(∫Rnf(y)g(x−y)dy)e−2πix⋅ξdx=∫Rnf(y)e−2πiy⋅ξ(∫Rng(z)e−2πiz⋅ξdz)dy=f^(ξ)g^(ξ), \mathcal{F}\{f * g\}(\xi) = \int_{\mathbb{R}^n} \left( \int_{\mathbb{R}^n} f(y) g(x - y) dy \right) e^{-2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^n} f(y) e^{-2\pi i y \cdot \xi} \left( \int_{\mathbb{R}^n} g(z) e^{-2\pi i z \cdot \xi} dz \right) dy = \hat{f}(\xi) \hat{g}(\xi), F{f∗g}(ξ)=∫Rn(∫Rnf(y)g(x−y)dy)e−2πix⋅ξdx=∫Rnf(y)e−2πiy⋅ξ(∫Rng(z)e−2πiz⋅ξdz)dy=f^(ξ)g^(ξ),
其中令 z=x−y z = x - y z=x−y.
这些性质与一维情况类似,证明依赖于积分的基本操作(如变量替换、Fubini 定理)。小节 5.2.5 应提供更多细节,但此处已覆盖主要内容。
问题7(b):证明旋转对称性的等价性
旋转对称性指 f(Qx)=f(x) f(Qx) = f(x) f(Qx)=f(x) 对所有正交变换 Q Q Q(即 QTQ=I Q^T Q = I QTQ=I,detQ=±1\det Q = \pm 1detQ=±1) 成立。等价地,f(x) f(x) f(x) 仅依赖于 ∣x∣ |x| ∣x∣(即径向函数)。需证:f f f 旋转对称当且仅当 f^ \hat{f} f^ 旋转对称。
证明:
设 g(x)=f(Qx) g(x) = f(Qx) g(x)=f(Qx)。其傅里叶变换为:
g^(ξ)=∫Rnf(Qx)e−2πix⋅ξdx.
\hat{g}(\xi) = \int_{\mathbb{R}^n} f(Qx) e^{-2\pi i x \cdot \xi} dx.
g^(ξ)=∫Rnf(Qx)e−2πix⋅ξdx.
令 y=Qx y = Qx y=Qx,则 x=QTy x = Q^T y x=QTy(因为 Q Q Q 正交,Q−1=QT Q^{-1} = Q^T Q−1=QT),且 dx=dy dx = dy dx=dy(雅可比行列式为 ∣detQ∣=1 |\det Q| = 1 ∣detQ∣=1)。代入得:
g^(ξ)=∫Rnf(y)e−2πi(QTy)⋅ξdy=∫Rnf(y)e−2πiy⋅(Qξ)dy=f^(Qξ),
\hat{g}(\xi) = \int_{\mathbb{R}^n} f(y) e^{-2\pi i (Q^T y) \cdot \xi} dy = \int_{\mathbb{R}^n} f(y) e^{-2\pi i y \cdot (Q \xi)} dy = \hat{f}(Q \xi),
g^(ξ)=∫Rnf(y)e−2πi(QTy)⋅ξdy=∫Rnf(y)e−2πiy⋅(Qξ)dy=f^(Qξ),
因为 (QTy)⋅ξ=y⋅(Qξ) (Q^T y) \cdot \xi = y \cdot (Q \xi) (QTy)⋅ξ=y⋅(Qξ)。
- 正向:若 f f f 旋转对称,即 f(Qx)=f(x) f(Qx) = f(x) f(Qx)=f(x) 对所有 Q Q Q,则 g(x)=f(Qx)=f(x) g(x) = f(Qx) = f(x) g(x)=f(Qx)=f(x),所以 g^=f^ \hat{g} = \hat{f} g^=f^。由上式,f^(Qξ)=g^(ξ)=f^(ξ) \hat{f}(Q \xi) = \hat{g}(\xi) = \hat{f}(\xi) f^(Qξ)=g^(ξ)=f^(ξ),故 f^ \hat{f} f^ 旋转对称。
- 反向:若 f^ \hat{f} f^ 旋转对称,即 f^(Qξ)=f^(ξ) \hat{f}(Q \xi) = \hat{f}(\xi) f^(Qξ)=f^(ξ) 对所有 Q Q Q,则 g^(ξ)=f^(Qξ)=f^(ξ) \hat{g}(\xi) = \hat{f}(Q \xi) = \hat{f}(\xi) g^(ξ)=f^(Qξ)=f^(ξ),所以 g^=f^ \hat{g} = \hat{f} g^=f^。由傅里叶变换的唯一性,g(x)=f(x) g(x) = f(x) g(x)=f(x),即 f(Qx)=f(x) f(Qx) = f(x) f(Qx)=f(x),故 f f f 旋转对称。
注:由旋转对称性,f(x) f(x) f(x) 仅依赖于 ∣x∣ |x| ∣x∣,因为正交变换保持范数不变。
问题8:求多维傅里叶变换
利用问题7(b),所有函数均为径向(依赖 ∣x∣ |x| ∣x∣),故 f^ \hat{f} f^ 也径向,即 f^(ξ)=F(∣ξ∣) \hat{f}(\xi) = F(|\xi|) f^(ξ)=F(∣ξ∣)。计算时,沿频率空间最后一个坐标轴计算 f^(0,…,0,k) \hat{f}(0, \ldots, 0, k) f^(0,…,0,k),并选用球坐标系(对任意 n≥2 n \geq 2 n≥2)。傅里叶变换为:
f^(0,…,0,k)=∫Rnf(∣x∣)e−2πixnkdx.
\hat{f}(0, \ldots, 0, k) = \int_{\mathbb{R}^n} f(|x|) e^{-2\pi i x_n k} dx.
f^(0,…,0,k)=∫Rnf(∣x∣)e−2πixnkdx.
在球坐标下,x=rθ x = r \theta x=rθ(r=∣x∣≥0 r = |x| \geq 0 r=∣x∣≥0,θ∈Sn−1 \theta \in S^{n-1} θ∈Sn−1 单位球面),体积元 dx=rn−1drdΩ dx = r^{n-1} dr d\Omega dx=rn−1drdΩ,其中 dΩ d\Omega dΩ 为球面测度。固定 ξ=(0,…,0,k) \xi = (0, \ldots, 0, k) ξ=(0,…,0,k),则 x⋅ξ=xnk=rkθn x \cdot \xi = x_n k = r k \theta_n x⋅ξ=xnk=rkθn,其中 θn \theta_n θn 为 θ \theta θ 的最后一个分量。于是:
f^(k)=∫0∞f(r)rn−1(∫Sn−1e−2πirkθndΩ)dr.
\hat{f}(k) = \int_0^\infty f(r) r^{n-1} \left( \int_{S^{n-1}} e^{-2\pi i r k \theta_n} d\Omega \right) dr.
f^(k)=∫0∞f(r)rn−1(∫Sn−1e−2πirkθndΩ)dr.
球面积分可表为贝塞尔函数。标准结果为:
∫Sn−1e−2πirkθndΩ=(2π)n/2(rk)(n−2)/2J(n−2)/2(2πrk),
\int_{S^{n-1}} e^{-2\pi i r k \theta_n} d\Omega = \frac{(2\pi)^{n/2}}{(r k)^{(n-2)/2}} J_{(n-2)/2}(2\pi r k),
∫Sn−1e−2πirkθndΩ=(rk)(n−2)/2(2π)n/2J(n−2)/2(2πrk),
其中 Jν J_\nu Jν 为第一类贝塞尔函数。因此:
f^(k)=∫0∞f(r)rn−1⋅(2π)n/2(rk)(n−2)/2J(n−2)/2(2πrk)dr=(2π)n/2k−(n−2)/2∫0∞f(r)J(n−2)/2(2πrk)rn/2dr.
\hat{f}(k) = \int_0^\infty f(r) r^{n-1} \cdot \frac{(2\pi)^{n/2}}{(r k)^{(n-2)/2}} J_{(n-2)/2}(2\pi r k) dr = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^\infty f(r) J_{(n-2)/2}(2\pi r k) r^{n/2} dr.
f^(k)=∫0∞f(r)rn−1⋅(rk)(n−2)/2(2π)n/2J(n−2)/2(2πrk)dr=(2π)n/2k−(n−2)/2∫0∞f(r)J(n−2)/2(2πrk)rn/2dr.
以下针对每个函数计算。为简化,采用一般 n n n,结果以贝塞尔函数表示;对 n=2,3 n=2,3 n=2,3 给出显式形式(因常用且更简洁)。最终结果以 ρ=∣ξ∣ \rho = |\xi| ρ=∣ξ∣ 表示,因径向性。
(a) f(x)={1∣x∣≤a0∣x∣>a f(x) = \begin{cases} 1 & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={10∣x∣≤a∣x∣>a
球内常数函数。
f^(k)=(2π)n/2k−(n−2)/2∫0aJ(n−2)/2(2πrk)rn/2dr.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^a J_{(n-2)/2}(2\pi r k) r^{n/2} dr.
f^(k)=(2π)n/2k−(n−2)/2∫0aJ(n−2)/2(2πrk)rn/2dr.
积分 ∫0arν+1Jν(cr)dr \int_0^a r^{\nu + 1} J_\nu(c r) dr ∫0arν+1Jν(cr)dr 有闭式(ν=(n−2)/2>−1 \nu = (n-2)/2 > -1 ν=(n−2)/2>−1,c=2πk c = 2\pi k c=2πk):
∫0arν+1Jν(cr)dr=aν+1cJν+1(ca),sinceddr[rν+1Jν+1(cr)]=crν+1Jν(cr).
\int_0^a r^{\nu + 1} J_\nu(c r) dr = \frac{a^{\nu + 1}}{c} J_{\nu + 1}(c a), \quad \text{since} \quad \frac{d}{dr} [r^{\nu + 1} J_{\nu + 1}(c r)] = c r^{\nu + 1} J_\nu(c r).
∫0arν+1Jν(cr)dr=caν+1Jν+1(ca),sincedrd[rν+1Jν+1(cr)]=crν+1Jν(cr).
这里 ν+1=n/2 \nu + 1 = n/2 ν+1=n/2,故:
∫0aJ(n−2)/2(2πrk)rn/2dr=an/22πkJn/2(2πak).
\int_0^a J_{(n-2)/2}(2\pi r k) r^{n/2} dr = \frac{a^{n/2}}{2\pi k} J_{n/2}(2\pi a k).
∫0aJ(n−2)/2(2πrk)rn/2dr=2πkan/2Jn/2(2πak).
代入得:
f^(k)=(2π)n/2k−(n−2)/2⋅an/22πkJn/2(2πak)=(2π)n/2−1an/2kn/2Jn/2(2πak).
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \cdot \frac{a^{n/2}}{2\pi k} J_{n/2}(2\pi a k) = \frac{(2\pi)^{n/2 - 1} a^{n/2}}{k^{n/2}} J_{n/2}(2\pi a k).
f^(k)=(2π)n/2k−(n−2)/2⋅2πkan/2Jn/2(2πak)=kn/2(2π)n/2−1an/2Jn/2(2πak).
以 ρ=∣ξ∣ \rho = |\xi| ρ=∣ξ∣ 表示(k=ρ k = \rho k=ρ):
f^(ξ)=(2π)n/2−1an/2∣ξ∣n/2Jn/2(2πa∣ξ∣)
\boxed{\hat{f}(\xi) = \dfrac{(2\pi)^{n/2 - 1} a^{n/2}}{|\xi|^{n/2}} J_{n/2}(2\pi a |\xi|)}
f^(ξ)=∣ξ∣n/2(2π)n/2−1an/2Jn/2(2πa∣ξ∣)
- 对 n=2 n=2 n=2:J1(z) J_1(z) J1(z) 为贝塞尔函数,
f^(ξ)=aρJ1(2πaρ),ρ=∣ξ∣. \hat{f}(\xi) = \frac{a}{\rho} J_1(2\pi a \rho), \quad \rho = |\xi|. f^(ξ)=ρaJ1(2πaρ),ρ=∣ξ∣. - 对 n=3 n=3 n=3:J3/2(z)=2πz(sinzz−cosz) J_{3/2}(z) = \sqrt{\frac{2}{\pi z}} \left( \frac{\sin z}{z} - \cos z \right) J3/2(z)=πz2(zsinz−cosz),
f^(ξ)=sin(2πaρ)−2πaρcos(2πaρ)πρ2⋅1(2πaρ)2⋅2πaρ,或f^(ξ)=sin(2πa∣ξ∣)−2πa∣ξ∣cos(2πa∣ξ∣)2π2∣ξ∣3. \hat{f}(\xi) = \frac{\sin(2\pi a \rho) - 2\pi a \rho \cos(2\pi a \rho)}{\pi \rho^2} \cdot \frac{1}{(2\pi a \rho)^2} \cdot 2\pi a \rho, \quad \text{或} \quad \hat{f}(\xi) = \frac{\sin(2\pi a |\xi|) - 2\pi a |\xi| \cos(2\pi a |\xi|)}{2\pi^2 |\xi|^3}. f^(ξ)=πρ2sin(2πaρ)−2πaρcos(2πaρ)⋅(2πaρ)21⋅2πaρ,或f^(ξ)=2π2∣ξ∣3sin(2πa∣ξ∣)−2πa∣ξ∣cos(2πa∣ξ∣).
(b) f(x)={a−∣x∣∣x∣≤a0∣x∣>a f(x) = \begin{cases} a - |x| & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={a−∣x∣0∣x∣≤a∣x∣>a
球内线性函数。
f^(k)=(2π)n/2k−(n−2)/2∫0a(a−r)J(n−2)/2(2πrk)rn/2dr.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^a (a - r) J_{(n-2)/2}(2\pi r k) r^{n/2} dr.
f^(k)=(2π)n/2k−(n−2)/2∫0a(a−r)J(n−2)/2(2πrk)rn/2dr.
需计算积分 I=∫0a(a−r)rn/2Jν(cr)dr I = \int_0^a (a - r) r^{n/2} J_{\nu}(c r) dr I=∫0a(a−r)rn/2Jν(cr)dr,其中 ν=(n−2)/2 \nu = (n-2)/2 ν=(n−2)/2,c=2πk c = 2\pi k c=2πk。分两部分:
I=a∫0arn/2Jν(cr)dr−∫0arn/2+1Jν(cr)dr.
I = a \int_0^a r^{n/2} J_{\nu}(c r) dr - \int_0^a r^{n/2 + 1} J_{\nu}(c r) dr.
I=a∫0arn/2Jν(cr)dr−∫0arn/2+1Jν(cr)dr.
第一积分同(a),第二积分需递推。一般形式复杂,故对 n=3 n=3 n=3 计算。
- 对 n=3 n=3 n=3:ν=1/2 \nu = 1/2 ν=1/2,J1/2(z)=2πzsinz J_{1/2}(z) = \sqrt{\frac{2}{\pi z}} \sin z J1/2(z)=πz2sinz。
f^(k)=(2π)3/2k−1/2∫0a(a−r)J1/2(2πrk)r3/2dr. \hat{f}(k) = (2\pi)^{3/2} k^{-1/2} \int_0^a (a - r) J_{1/2}(2\pi r k) r^{3/2} dr. f^(k)=(2π)3/2k−1/2∫0a(a−r)J1/2(2πrk)r3/2dr.
代入 J1/2 J_{1/2} J1/2:
J1/2(2πrk)=2π⋅2πrksin(2πrk)=sin(2πrk)πrk. J_{1/2}(2\pi r k) = \sqrt{\frac{2}{\pi \cdot 2\pi r k}} \sin(2\pi r k) = \frac{\sin(2\pi r k)}{\pi \sqrt{r k}}. J1/2(2πrk)=π⋅2πrk2sin(2πrk)=πrksin(2πrk).
所以:
f^(k)=(2π)3/2k−1/2∫0a(a−r)r3/2⋅sin(2πrk)πrkdr=(2π)3/2k−1π−1∫0a(a−r)rsin(2πrk)dr. \hat{f}(k) = (2\pi)^{3/2} k^{-1/2} \int_0^a (a - r) r^{3/2} \cdot \frac{\sin(2\pi r k)}{\pi \sqrt{r k}} dr = (2\pi)^{3/2} k^{-1} \pi^{-1} \int_0^a (a - r) r \sin(2\pi r k) dr. f^(k)=(2π)3/2k−1/2∫0a(a−r)r3/2⋅πrksin(2πrk)dr=(2π)3/2k−1π−1∫0a(a−r)rsin(2πrk)dr.
计算积分:
∫0a(a−r)rsin(βr)dr(β=2πk). \int_0^a (a - r) r \sin(\beta r) dr \quad (\beta = 2\pi k). ∫0a(a−r)rsin(βr)dr(β=2πk).
分部积分或标准公式:
∫0arsin(βr)dr=sin(βa)−βacos(βa)β2,∫0ar2sin(βr)dr=(2−β2a2)sin(βa)+2βacos(βa)β3−2β3. \int_0^a r \sin(\beta r) dr = \frac{\sin(\beta a) - \beta a \cos(\beta a)}{\beta^2}, \quad \int_0^a r^2 \sin(\beta r) dr = \frac{(2 - \beta^2 a^2) \sin(\beta a) + 2\beta a \cos(\beta a)}{\beta^3} - \frac{2}{\beta^3}. ∫0arsin(βr)dr=β2sin(βa)−βacos(βa),∫0ar2sin(βr)dr=β3(2−β2a2)sin(βa)+2βacos(βa)−β32.
结合得:
∫0a(a−r)rsin(βr)dr=a∫0arsin(βr)dr−∫0ar2sin(βr)dr=⋯=2sin(βa)−2βacos(βa)−β2a2sin(βa)β3. \int_0^a (a - r) r \sin(\beta r) dr = a \int_0^a r \sin(\beta r) dr - \int_0^a r^2 \sin(\beta r) dr = \cdots = \frac{2 \sin(\beta a) - 2\beta a \cos(\beta a) - \beta^2 a^2 \sin(\beta a)}{\beta^3}. ∫0a(a−r)rsin(βr)dr=a∫0arsin(βr)dr−∫0ar2sin(βr)dr=⋯=β32sin(βa)−2βacos(βa)−β2a2sin(βa).
代入 β=2πk \beta = 2\pi k β=2πk,并整理:
f^(k)=(2π)3/2π−1k−1⋅2sin(2πak)−2(2πak)cos(2πak)−(2πak)2sin(2πak)(2πk)3=sin(2πak)−2πakcos(2πak)−2π2a2k2sin(2πak)2π2k3. \hat{f}(k) = (2\pi)^{3/2} \pi^{-1} k^{-1} \cdot \frac{2 \sin(2\pi a k) - 2(2\pi a k) \cos(2\pi a k) - (2\pi a k)^2 \sin(2\pi a k)}{(2\pi k)^3} = \frac{\sin(2\pi a k) - 2\pi a k \cos(2\pi a k) - 2\pi^2 a^2 k^2 \sin(2\pi a k)}{2\pi^2 k^3}. f^(k)=(2π)3/2π−1k−1⋅(2πk)32sin(2πak)−2(2πak)cos(2πak)−(2πak)2sin(2πak)=2π2k3sin(2πak)−2πakcos(2πak)−2π2a2k2sin(2πak).
以 ρ=k \rho = k ρ=k 表示:
f^(ξ)=sin(2πa∣ξ∣)−2πa∣ξ∣cos(2πa∣ξ∣)−2π2a2∣ξ∣2sin(2πa∣ξ∣)2π2∣ξ∣3(n=3) \boxed{\hat{f}(\xi) = \dfrac{\sin(2\pi a |\xi|) - 2\pi a |\xi| \cos(2\pi a |\xi|) - 2\pi^2 a^2 |\xi|^2 \sin(2\pi a |\xi|)}{2\pi^2 |\xi|^3}} \quad (n=3) f^(ξ)=2π2∣ξ∣3sin(2πa∣ξ∣)−2πa∣ξ∣cos(2πa∣ξ∣)−2π2a2∣ξ∣2sin(2πa∣ξ∣)(n=3)
一般 n n n 可用贝塞尔函数,但显式复杂。
© f(x)={(a−∣x∣)2∣x∣≤a0∣x∣>a f(x) = \begin{cases} (a - |x|)^2 & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={(a−∣x∣)20∣x∣≤a∣x∣>a
球内二次函数。
类似(b),积分:
f^(k)=(2π)n/2k−(n−2)/2∫0a(a−r)2J(n−2)/2(2πrk)rn/2dr.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^a (a - r)^2 J_{(n-2)/2}(2\pi r k) r^{n/2} dr.
f^(k)=(2π)n/2k−(n−2)/2∫0a(a−r)2J(n−2)/2(2πrk)rn/2dr.
对 n=3 n=3 n=3,计算:
f^(k)=(2π)3/2k−1/2∫0a(a−r)2J1/2(2πrk)r3/2dr=(2π)3/2k−1π−1∫0a(a−r)2rsin(2πrk)dr.
\hat{f}(k) = (2\pi)^{3/2} k^{-1/2} \int_0^a (a - r)^2 J_{1/2}(2\pi r k) r^{3/2} dr = (2\pi)^{3/2} k^{-1} \pi^{-1} \int_0^a (a - r)^2 r \sin(2\pi r k) dr.
f^(k)=(2π)3/2k−1/2∫0a(a−r)2J1/2(2πrk)r3/2dr=(2π)3/2k−1π−1∫0a(a−r)2rsin(2πrk)dr.
积分 ∫0a(a−r)2rsin(βr)dr \int_0^a (a - r)^2 r \sin(\beta r) dr ∫0a(a−r)2rsin(βr)dr(β=2πk \beta = 2\pi k β=2πk)。展开 (a−r)2=a2−2ar+r2 (a - r)^2 = a^2 - 2a r + r^2 (a−r)2=a2−2ar+r2,分三项积分,每项可用分部积分。结果:
∫0a(a−r)2rsin(βr)dr=2aβ3[2βacos(βa)+(β2a2−2)sin(βa)].
\int_0^a (a - r)^2 r \sin(\beta r) dr = \frac{2a}{\beta^3} [2\beta a \cos(\beta a) + (\beta^2 a^2 - 2) \sin(\beta a)].
∫0a(a−r)2rsin(βr)dr=β32a[2βacos(βa)+(β2a2−2)sin(βa)].
代入并简化:
f^(k)=aπ2k3[2πakcos(2πak)+(4π2a2k2−2)sin(2πak)].
\hat{f}(k) = \frac{a}{\pi^2 k^3} [2\pi a k \cos(2\pi a k) + (4\pi^2 a^2 k^2 - 2) \sin(2\pi a k)].
f^(k)=π2k3a[2πakcos(2πak)+(4π2a2k2−2)sin(2πak)].
以 ρ=k \rho = k ρ=k 表示:
f^(ξ)=aπ2∣ξ∣3[2πa∣ξ∣cos(2πa∣ξ∣)+(4π2a2∣ξ∣2−2)sin(2πa∣ξ∣)](n=3)
\boxed{\hat{f}(\xi) = \dfrac{a}{\pi^2 |\xi|^3} \left[ 2\pi a |\xi| \cos(2\pi a |\xi|) + (4\pi^2 a^2 |\xi|^2 - 2) \sin(2\pi a |\xi|) \right]} \quad (n=3)
f^(ξ)=π2∣ξ∣3a[2πa∣ξ∣cos(2πa∣ξ∣)+(4π2a2∣ξ∣2−2)sin(2πa∣ξ∣)](n=3)
(d) f(x)={a2−∣x∣2∣x∣≤a0∣x∣>a f(x) = \begin{cases} a^2 - |x|^2 & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={a2−∣x∣20∣x∣≤a∣x∣>a
球内二次函数。
f^(k)=(2π)n/2k−(n−2)/2∫0a(a2−r2)J(n−2)/2(2πrk)rn/2dr.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^a (a^2 - r^2) J_{(n-2)/2}(2\pi r k) r^{n/2} dr.
f^(k)=(2π)n/2k−(n−2)/2∫0a(a2−r2)J(n−2)/2(2πrk)rn/2dr.
对 n=3 n=3 n=3:
f^(k)=(2π)3/2k−1/2∫0a(a2−r2)J1/2(2πrk)r3/2dr=(2π)3/2k−1π−1∫0a(a2−r2)rsin(2πrk)dr.
\hat{f}(k) = (2\pi)^{3/2} k^{-1/2} \int_0^a (a^2 - r^2) J_{1/2}(2\pi r k) r^{3/2} dr = (2\pi)^{3/2} k^{-1} \pi^{-1} \int_0^a (a^2 - r^2) r \sin(2\pi r k) dr.
f^(k)=(2π)3/2k−1/2∫0a(a2−r2)J1/2(2πrk)r3/2dr=(2π)3/2k−1π−1∫0a(a2−r2)rsin(2πrk)dr.
积分 ∫0a(a2r−r3)sin(βr)dr \int_0^a (a^2 r - r^3) \sin(\beta r) dr ∫0a(a2r−r3)sin(βr)dr(β=2πk \beta = 2\pi k β=2πk)。分部积分:
∫0arsin(βr)dr=sin(βa)−βacos(βa)β2,∫0ar3sin(βr)dr=(3β2a2−6)sin(βa)+(β3a3−6βa)cos(βa)β4.
\int_0^a r \sin(\beta r) dr = \frac{\sin(\beta a) - \beta a \cos(\beta a)}{\beta^2}, \quad \int_0^a r^3 \sin(\beta r) dr = \frac{(3\beta^2 a^2 - 6) \sin(\beta a) + (\beta^3 a^3 - 6\beta a) \cos(\beta a)}{\beta^4}.
∫0arsin(βr)dr=β2sin(βa)−βacos(βa),∫0ar3sin(βr)dr=β4(3β2a2−6)sin(βa)+(β3a3−6βa)cos(βa).
结合得:
∫0a(a2r−r3)sin(βr)dr=a2⋅sin(βa)−βacos(βa)β2−(3β2a2−6)sin(βa)+(β3a3−6βa)cos(βa)β4=⋯=6sin(βa)−6βacos(βa)−β3a3cos(βa)β4.
\int_0^a (a^2 r - r^3) \sin(\beta r) dr = a^2 \cdot \frac{\sin(\beta a) - \beta a \cos(\beta a)}{\beta^2} - \frac{(3\beta^2 a^2 - 6) \sin(\beta a) + (\beta^3 a^3 - 6\beta a) \cos(\beta a)}{\beta^4} = \cdots = \frac{6 \sin(\beta a) - 6\beta a \cos(\beta a) - \beta^3 a^3 \cos(\beta a)}{\beta^4}.
∫0a(a2r−r3)sin(βr)dr=a2⋅β2sin(βa)−βacos(βa)−β4(3β2a2−6)sin(βa)+(β3a3−6βa)cos(βa)=⋯=β46sin(βa)−6βacos(βa)−β3a3cos(βa).
代入并简化:
f^(k)=(2π)3/2π−1k−1⋅6sin(2πak)−6(2πak)cos(2πak)−(2πak)3cos(2πak)(2πk)4=3sin(2πa∣ξ∣)−3πa∣ξ∣cos(2πa∣ξ∣)−π3a3∣ξ∣3cos(2πa∣ξ∣)2π3∣ξ∣5.
\hat{f}(k) = (2\pi)^{3/2} \pi^{-1} k^{-1} \cdot \frac{6 \sin(2\pi a k) - 6(2\pi a k) \cos(2\pi a k) - (2\pi a k)^3 \cos(2\pi a k)}{(2\pi k)^4} = \frac{3 \sin(2\pi a |\xi|) - 3\pi a |\xi| \cos(2\pi a |\xi|) - \pi^3 a^3 |\xi|^3 \cos(2\pi a |\xi|)}{2\pi^3 |\xi|^5}.
f^(k)=(2π)3/2π−1k−1⋅(2πk)46sin(2πak)−6(2πak)cos(2πak)−(2πak)3cos(2πak)=2π3∣ξ∣53sin(2πa∣ξ∣)−3πa∣ξ∣cos(2πa∣ξ∣)−π3a3∣ξ∣3cos(2πa∣ξ∣).
以 ρ=∣ξ∣ \rho = |\xi| ρ=∣ξ∣ 表示:
f^(ξ)=3sin(2πa∣ξ∣)−3πa∣ξ∣cos(2πa∣ξ∣)−π3a3∣ξ∣3cos(2πa∣ξ∣)2π3∣ξ∣5(n=3)
\boxed{\hat{f}(\xi) = \dfrac{3 \sin(2\pi a |\xi|) - 3\pi a |\xi| \cos(2\pi a |\xi|) - \pi^3 a^3 |\xi|^3 \cos(2\pi a |\xi|)}{2\pi^3 |\xi|^5}} \quad (n=3)
f^(ξ)=2π3∣ξ∣53sin(2πa∣ξ∣)−3πa∣ξ∣cos(2πa∣ξ∣)−π3a3∣ξ∣3cos(2πa∣ξ∣)(n=3)
(e) f(x)=e−α∣x∣ f(x) = e^{-\alpha |x|} f(x)=e−α∣x∣(α>0 \alpha > 0 α>0)
指数衰减函数。
f^(k)=(2π)n/2k−(n−2)/2∫0∞e−αrJ(n−2)/2(2πrk)rn/2dr.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^\infty e^{-\alpha r} J_{(n-2)/2}(2\pi r k) r^{n/2} dr.
f^(k)=(2π)n/2k−(n−2)/2∫0∞e−αrJ(n−2)/2(2πrk)rn/2dr.
积分 ∫0∞e−αrrμJν(βr)dr \int_0^\infty e^{-\alpha r} r^{\mu} J_\nu(\beta r) dr ∫0∞e−αrrμJν(βr)dr 有闭式(见标准表)。结果为:
∫0∞e−prrνJν(qr)dr=(2q)νΓ(ν+1/2)π(p2+q2)ν+1/2,p>0, ν>−1/2.
\int_0^\infty e^{-p r} r^{\nu} J_\nu(q r) dr = \frac{(2q)^\nu \Gamma(\nu + 1/2)}{\sqrt{\pi} (p^2 + q^2)^{\nu + 1/2}}, \quad p > 0, \, \nu > -1/2.
∫0∞e−prrνJν(qr)dr=π(p2+q2)ν+1/2(2q)νΓ(ν+1/2),p>0,ν>−1/2.
这里 p=α p = \alpha p=α,q=2πk q = 2\pi k q=2πk,μ=n/2 \mu = n/2 μ=n/2,ν=(n−2)/2 \nu = (n-2)/2 ν=(n−2)/2。注意 μ=ν+1 \mu = \nu + 1 μ=ν+1,且 ν>−1/2 \nu > -1/2 ν>−1/2 对 n≥2 n \geq 2 n≥2 成立。代入:
∫0∞e−αrrn/2J(n−2)/2(2πrk)dr=[2(2πk)](n−2)/2Γ(n−12)π(α2+(2πk)2)(n−1)/2.
\int_0^\infty e^{-\alpha r} r^{n/2} J_{(n-2)/2}(2\pi r k) dr = \frac{[2(2\pi k)]^{(n-2)/2} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi} (\alpha^2 + (2\pi k)^2)^{(n-1)/2}}.
∫0∞e−αrrn/2J(n−2)/2(2πrk)dr=π(α2+(2πk)2)(n−1)/2[2(2πk)](n−2)/2Γ(2n−1).
代入原式并简化:
f^(k)=(2π)n/2k−(n−2)/2⋅[4πk](n−2)/2Γ(n−12)π(α2+4π2k2)(n−1)/2=(2π)n/2(4πk)(n−2)/2Γ(n−12)πk(n−2)/2(α2+4π2k2)(n−1)/2=(2π)n/2(4π)(n−2)/2Γ(n−12)π(α2+4π2k2)(n−1)/2.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \cdot \frac{[4\pi k]^{(n-2)/2} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi} (\alpha^2 + 4\pi^2 k^2)^{(n-1)/2}} = \frac{(2\pi)^{n/2} (4\pi k)^{(n-2)/2} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi} k^{(n-2)/2} (\alpha^2 + 4\pi^2 k^2)^{(n-1)/2}} = \frac{(2\pi)^{n/2} (4\pi)^{(n-2)/2} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi} (\alpha^2 + 4\pi^2 k^2)^{(n-1)/2}}.
f^(k)=(2π)n/2k−(n−2)/2⋅π(α2+4π2k2)(n−1)/2[4πk](n−2)/2Γ(2n−1)=πk(n−2)/2(α2+4π2k2)(n−1)/2(2π)n/2(4πk)(n−2)/2Γ(2n−1)=π(α2+4π2k2)(n−1)/2(2π)n/2(4π)(n−2)/2Γ(2n−1).
进一步简化,(4π)(n−2)/2=(22π)(n−2)/2=2n−2π(n−2)/2 (4\pi)^{(n-2)/2} = (2^2 \pi)^{(n-2)/2} = 2^{n-2} \pi^{(n-2)/2} (4π)(n−2)/2=(22π)(n−2)/2=2n−2π(n−2)/2,且 (2π)n/2=2n/2πn/2 (2\pi)^{n/2} = 2^{n/2} \pi^{n/2} (2π)n/2=2n/2πn/2,故:
f^(k)=2n/2πn/2⋅2n−2π(n−2)/2Γ(n−12)π(α2+4π2k2)(n−1)/2=2(3n−4)/2πn−1Γ(n−12)(α2+4π2k2)(n−1)/2.
\hat{f}(k) = \frac{2^{n/2} \pi^{n/2} \cdot 2^{n-2} \pi^{(n-2)/2} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi} (\alpha^2 + 4\pi^2 k^2)^{(n-1)/2}} = \frac{2^{(3n-4)/2} \pi^{n-1} \Gamma\left(\frac{n-1}{2}\right)}{(\alpha^2 + 4\pi^2 k^2)^{(n-1)/2}}.
f^(k)=π(α2+4π2k2)(n−1)/22n/2πn/2⋅2n−2π(n−2)/2Γ(2n−1)=(α2+4π2k2)(n−1)/22(3n−4)/2πn−1Γ(2n−1).
以 ρ=∣ξ∣ \rho = |\xi| ρ=∣ξ∣ 表示(k=ρ k = \rho k=ρ):
f^(ξ)=2(3n−4)/2πn−1Γ(n−12)(α2+4π2∣ξ∣2)(n−1)/2
\boxed{\hat{f}(\xi) = \dfrac{2^{(3n-4)/2} \pi^{n-1} \Gamma\left(\dfrac{n-1}{2}\right)}{(\alpha^2 + 4\pi^2 |\xi|^2)^{(n-1)/2}}}
f^(ξ)=(α2+4π2∣ξ∣2)(n−1)/22(3n−4)/2πn−1Γ(2n−1)
- 对 n=3 n=3 n=3:Γ(1)=1 \Gamma(1) = 1 Γ(1)=1,
f^(ξ)=8πα(α2+4π2∣ξ∣2)2. \hat{f}(\xi) = \frac{8\pi \alpha}{(\alpha^2 + 4\pi^2 |\xi|^2)^2}. f^(ξ)=(α2+4π2∣ξ∣2)28πα.
(f) f(x)=∣x∣e−α∣x∣ f(x) = |x| e^{-\alpha |x|} f(x)=∣x∣e−α∣x∣
f^(k)=(2π)n/2k−(n−2)/2∫0∞r⋅e−αrJ(n−2)/2(2πrk)rn/2dr=(2π)n/2k−(n−2)/2∫0∞e−αrJ(n−2)/2(2πrk)rn/2+1dr.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^\infty r \cdot e^{-\alpha r} J_{(n-2)/2}(2\pi r k) r^{n/2} dr = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^\infty e^{-\alpha r} J_{(n-2)/2}(2\pi r k) r^{n/2 + 1} dr.
f^(k)=(2π)n/2k−(n−2)/2∫0∞r⋅e−αrJ(n−2)/2(2πrk)rn/2dr=(2π)n/2k−(n−2)/2∫0∞e−αrJ(n−2)/2(2πrk)rn/2+1dr.
积分形式同(e),但指数增加1。一般解为:
∫0∞e−prrν+1Jν(qr)dr=2p(2q)νΓ(ν+3/2)π(p2+q2)ν+3/2,p>0, ν>−1.
\int_0^\infty e^{-p r} r^{\nu + 1} J_\nu(q r) dr = \frac{2 p (2q)^\nu \Gamma(\nu + 3/2)}{\sqrt{\pi} (p^2 + q^2)^{\nu + 3/2}}, \quad p > 0, \, \nu > -1.
∫0∞e−prrν+1Jν(qr)dr=π(p2+q2)ν+3/22p(2q)νΓ(ν+3/2),p>0,ν>−1.
这里 p=α p = \alpha p=α,q=2πk q = 2\pi k q=2πk,ν=(n−2)/2 \nu = (n-2)/2 ν=(n−2)/2。代入并简化:
f^(k)=(2π)n/2k−(n−2)/2⋅2α[2(2πk)](n−2)/2Γ(n2+12)π(α2+(2πk)2)(n+1)/2.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \cdot \frac{2\alpha [2(2\pi k)]^{(n-2)/2} \Gamma\left(\frac{n}{2} + \frac{1}{2}\right)}{\sqrt{\pi} (\alpha^2 + (2\pi k)^2)^{(n+1)/2}}.
f^(k)=(2π)n/2k−(n−2)/2⋅π(α2+(2πk)2)(n+1)/22α[2(2πk)](n−2)/2Γ(2n+21).
以 ρ=∣ξ∣ \rho = |\xi| ρ=∣ξ∣ 表示:
f^(ξ)=2(3n−2)/2πn−1αΓ(n+12)(α2+4π2∣ξ∣2)(n+1)/2
\boxed{\hat{f}(\xi) = \dfrac{2^{(3n-2)/2} \pi^{n-1} \alpha \Gamma\left(\dfrac{n+1}{2}\right)}{(\alpha^2 + 4\pi^2 |\xi|^2)^{(n+1)/2}}}
f^(ξ)=(α2+4π2∣ξ∣2)(n+1)/22(3n−2)/2πn−1αΓ(2n+1)
- 对 n=3 n=3 n=3:Γ(2)=1 \Gamma(2) = 1 Γ(2)=1,
f^(ξ)=16πα(α2+4π2∣ξ∣2)2. \hat{f}(\xi) = \frac{16\pi \alpha}{(\alpha^2 + 4\pi^2 |\xi|^2)^{2}}. f^(ξ)=(α2+4π2∣ξ∣2)216πα.
(g) f(x)=∣x∣2e−α∣x∣ f(x) = |x|^2 e^{-\alpha |x|} f(x)=∣x∣2e−α∣x∣
f^(k)=(2π)n/2k−(n−2)/2∫0∞r2e−αrJ(n−2)/2(2πrk)rn/2dr=(2π)n/2k−(n−2)/2∫0∞e−αrJ(n−2)/2(2πrk)rn/2+2dr.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^\infty r^2 e^{-\alpha r} J_{(n-2)/2}(2\pi r k) r^{n/2} dr = (2\pi)^{n/2} k^{-(n-2)/2} \int_0^\infty e^{-\alpha r} J_{(n-2)/2}(2\pi r k) r^{n/2 + 2} dr.
f^(k)=(2π)n/2k−(n−2)/2∫0∞r2e−αrJ(n−2)/2(2πrk)rn/2dr=(2π)n/2k−(n−2)/2∫0∞e−αrJ(n−2)/2(2πrk)rn/2+2dr.
积分:
∫0∞e−prrν+2Jν(qr)dr=2(2q)νΓ(ν+5/2)(p2+q2−νq2)π(p2+q2)ν+5/2,p>0, ν>−1.
\int_0^\infty e^{-p r} r^{\nu + 2} J_\nu(q r) dr = \frac{2 (2q)^\nu \Gamma(\nu + 5/2) (p^2 + q^2 - \nu q^2)}{\sqrt{\pi} (p^2 + q^2)^{\nu + 5/2}}, \quad p > 0, \, \nu > -1.
∫0∞e−prrν+2Jν(qr)dr=π(p2+q2)ν+5/22(2q)νΓ(ν+5/2)(p2+q2−νq2),p>0,ν>−1.
代入 p=α p = \alpha p=α,q=2πk q = 2\pi k q=2πk,ν=(n−2)/2 \nu = (n-2)/2 ν=(n−2)/2,并简化:
f^(k)=(2π)n/2k−(n−2)/2⋅2[2(2πk)](n−2)/2Γ(n+32)[α2+(2πk)2−n−22(2πk)2]π(α2+(2πk)2)(n+3)/2.
\hat{f}(k) = (2\pi)^{n/2} k^{-(n-2)/2} \cdot \frac{2 [2(2\pi k)]^{(n-2)/2} \Gamma\left(\frac{n+3}{2}\right) [\alpha^2 + (2\pi k)^2 - \frac{n-2}{2} (2\pi k)^2] }{\sqrt{\pi} (\alpha^2 + (2\pi k)^2)^{(n+3)/2}}.
f^(k)=(2π)n/2k−(n−2)/2⋅π(α2+(2πk)2)(n+3)/22[2(2πk)](n−2)/2Γ(2n+3)[α2+(2πk)2−2n−2(2πk)2].
以 ρ=∣ξ∣ \rho = |\xi| ρ=∣ξ∣ 表示:
f^(ξ)=2(3n−2)/2πn−1Γ(n+32)[α2+4π2∣ξ∣2(1−n−22)](α2+4π2∣ξ∣2)(n+3)/2
\boxed{\hat{f}(\xi) = \dfrac{2^{(3n-2)/2} \pi^{n-1} \Gamma\left(\dfrac{n+3}{2}\right) \left[ \alpha^2 + 4\pi^2 |\xi|^2 \left(1 - \dfrac{n-2}{2}\right) \right] }{(\alpha^2 + 4\pi^2 |\xi|^2)^{(n+3)/2}}}
f^(ξ)=(α2+4π2∣ξ∣2)(n+3)/22(3n−2)/2πn−1Γ(2n+3)[α2+4π2∣ξ∣2(1−2n−2)]
- 对 n=3 n=3 n=3:Γ(3)=2 \Gamma(3) = 2 Γ(3)=2,且 1−3−22=12 1 - \frac{3-2}{2} = \frac{1}{2} 1−23−2=21,
f^(ξ)=32πα2+16π3∣ξ∣2(α2+4π2∣ξ∣2)3. \hat{f}(\xi) = \frac{32\pi \alpha^2 + 16\pi^3 |\xi|^2}{(\alpha^2 + 4\pi^2 |\xi|^2)^{3}}. f^(ξ)=(α2+4π2∣ξ∣2)332πα2+16π3∣ξ∣2.
总结
- 问题7(a):多维傅里叶变换性质类似一维,证明基于积分操作。
- 问题7(b):旋转对称性等价性证明基于正交变换下傅里叶变换的行为。
- 问题8:傅里叶变换结果已给出,一般 n n n 以贝塞尔函数表示,特定 n n n 有显式。计算中假设 α>0 \alpha > 0 α>0,a>0 a > 0 a>0,∣ξ∣>0 |\xi| > 0 ∣ξ∣>0(在 ∣ξ∣=0 |\xi| = 0 ∣ξ∣=0 时需单独处理,但通常连续)。
提示:所有计算利用径向对称性,沿 k k k-轴积分,并使用球坐标系。