当前位置: 首页 > news >正文

【PyTorch】PyTorch中的数据预处理操作

PyTorch深度学习总结

第十二章 PyTorch中的数据预处理操作


文章目录

  • PyTorch深度学习总结
  • 前言
  • 一、`torch.utils.data` 模块
    • 1. 核心组件
    • 2.常用工具类
    • 3. 数据采样器
  • 二、常用函数


前言

上文介绍了PyTorch中torch.nn模块的全连接层,本文将介绍PyTorch中torch.utils.data 模块的数据处理操作:


一、torch.utils.data 模块

torch.utils.dataPyTorch 中用于数据处理和加载的重要模块,它提供了一系列工具和类,方便用户对数据集进行管理和操作。以下是对该模块的详细介绍:

1. 核心组件

1.1 Dataset 类

  • 作用Dataset 类是一个抽象基类,用于表示数据集。用户需要继承这个类并实现 __len____getitem__ 方法,以定义数据集的长度和如何获取数据集中的单个样本。
  • 示例
import torch
from torch.utils.data import Datasetclass MyDataset(Dataset):def __init__(self, data):self.data = datadef __len__(self):return len(self.data)def __getitem__(self, idx):return self.data[idx]data = [1, 2, 3, 4, 5]
dataset = MyDataset(data)
print(len(dataset))  
print(dataset[2])    
  • 解释:在这个示例中,我们创建了一个自定义的数据集类 MyDataset,它接受一个列表作为数据。__len__ 方法返回数据集的长度,__getitem__ 方法根据索引返回数据集中的单个样本。

1.2 DataLoader 类

  • 作用DataLoader 类用于将数据集封装成一个可迭代的对象,支持批量加载数据、打乱数据顺序、多线程加载等功能,方便在训练模型时使用。
  • 示例
from torch.utils.data import DataLoaderdataloader = DataLoader(dataset, batch_size=2, shuffle=True)
for batch in dataloader:print(batch)
  • 解释:在这个示例中,我们将之前创建的 dataset 封装成一个 DataLoader 对象,设置批量大小为 2,并开启数据打乱功能。然后通过迭代 DataLoader 对象,可以逐批获取数据。

2.常用工具类

2.1 Subset 类

  • 作用Subset 类用于创建数据集的子集,通过指定数据集和索引列表来获取子集中的数据。
  • 示例
from torch.utils.data import Subsetsubset = Subset(dataset, [0, 2, 4])
print(len(subset))  
print(subset[1])    
  • 解释:在这个示例中,我们创建了 dataset 的一个子集 subset,只包含索引为 0、2、4 的样本。

2.2 ConcatDataset 类

  • 作用ConcatDataset 类用于将多个数据集合并成一个数据集。
  • 示例
from torch.utils.data import ConcatDatasetdataset1 = MyDataset([1, 2, 3])
dataset2 = MyDataset([4, 5, 6])
concat_dataset = ConcatDataset([dataset1, dataset2])
print(len(concat_dataset))  
print(concat_dataset[4])    
  • 解释:在这个示例中,我们将两个自定义的数据集 dataset1dataset2 合并成一个新的数据集 concat_dataset

3. 数据采样器

3.1 RandomSampler 类

  • 作用RandomSampler 类用于随机采样数据集中的样本,常用于打乱数据顺序。
  • 示例
from torch.utils.data import RandomSamplersampler = RandomSampler(dataset)
dataloader = DataLoader(dataset, batch_size=2, sampler=sampler)
for batch in dataloader:print(batch)
  • 解释:在这个示例中,我们使用 RandomSampler 类对数据集进行随机采样,然后将采样器传递给 DataLoader 对象,这样在加载数据时会随机获取样本。

3.2 SequentialSampler 类

  • 作用SequentialSampler 类用于按顺序采样数据集中的样本。
  • 示例
from torch.utils.data import SequentialSamplersampler = SequentialSampler(dataset)
dataloader = DataLoader(dataset, batch_size=2, sampler=sampler)
for batch in dataloader:print(batch)
  • 解释:在这个示例中,我们使用 SequentialSampler 类对数据集进行顺序采样,然后将采样器传递给 DataLoader 对象,这样在加载数据时会按顺序获取样本。

二、常用函数

操作函数功能
torch.utils.data.TensorDataset()将数据处理为张量
torch.utils.data.ConcatDataset()连接多个数据集
torch.utils.data.Subset()根据索引获取数据集的子集
torch.utils.data.DataLoader()数据加载器
torch.utils.data.random_split()随机将数据集拆分为给定长度的非重叠新数据集
http://www.lryc.cn/news/584037.html

相关文章:

  • 杰赛S65_中星微ZX296716免拆刷机教程解决网络错误和时钟问题
  • RocketMQ安装(Windows环境)
  • 零成本实现商品图换背景
  • 特征筛选步骤
  • 计算机视觉 之 数字图像处理基础
  • NAT技术(网络地址转换)
  • IPv4和IPv6双栈配置
  • CRT 不同会导致 fopen 地址不同
  • 飞书AI技术体系
  • Java 正则表达式白皮书:语法详解、工程实践与常用表达式库
  • OSPF协议:核心概念与配置要点解析
  • 栈题解——有效的括号【LeetCode】两种方法
  • ACL协议:核心概念与配置要点解析
  • LlamaFactory Demo
  • 强缓存和协商缓存详解
  • SQL进阶:自连接的用法
  • 深度探索:实时交互与增强现实翻译技术(第六篇)
  • 【郑大二年级信安小学期】Day9:XSS跨站攻击XSS绕过CSRF漏洞SSRF漏洞
  • 医院多部门协同构建知识库-指南库-预测模型三维网络路径研究
  • 【C++】第十四节—模版进阶(非类型模版参数+模板的特化+模版分离编译+模版总结)
  • OSPF实验以及核心原理全解
  • vue引入应用通义AI大模型-(一)前期准备整理思路
  • Vue+Element Plus 中按回车刷新页面问题排查与解决
  • Scala实现网页数据采集示例
  • AI 智能体:开启自动化协作新时代
  • 2025.07.09华为机考真题解析-第三题300分
  • CentOs 7 MySql8.0.23之前的版本主从复制
  • 树莓派5+Ubuntu24.04 LTS ROS2 N10P镭神激光雷达 保姆级教程
  • ubuntu server配置静态IP
  • java(2025/7/10)