当前位置: 首页 > news >正文

Pytorch|YOLO

  • 🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type='cuda')

2. 导入数据

import pathlibdata_dir = "./data/weather_photos/"
data_dir = pathlib.Path(data_dir)# 获取所有子目录路径
data_paths = list(data_dir.glob('*'))# 使用 path.parts 获取正确的目录名称
classeNames = [path.parts[-1] for path in data_paths]
print(classeNames)

['cloudy', 'rain', 'shine', 'sunrise']

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transform = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("./data/weather_photos/",transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 1125Root location: ./data/weather_photos/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
total_data.class_to_idx

{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

(<torch.utils.data.dataset.Subset at 0x19600429450>,
 <torch.utils.data.dataset.Subset at 0x196004297e0>)

batch_size = 4train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)

for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

二、搭建包含C3模块的模型

📌K同学啊提示:是否可以尝试通过增加/调整C3模块与Conv模块来提高准确率?

1. 搭建模型

import torch.nn.functional as Fdef autopad(k, p=None):  # kernel, padding# Pad to 'same'if p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolutiondef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))class model_K(nn.Module):def __init__(self):super(model_K, self).__init__()# 卷积模块self.Conv = Conv(3, 32, 3, 2) # C3模块1self.C3_1 = C3(32, 64, 3, 2)# 全连接网络层,用于分类self.classifier = nn.Sequential(nn.Linear(in_features=802816, out_features=100),nn.ReLU(),nn.Linear(in_features=100, out_features=4))def forward(self, x):x = self.Conv(x)x = self.C3_1(x)x = torch.flatten(x, start_dim=1)x = self.classifier(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = model_K().to(device)
model

Using cuda device

model_K(
  (Conv): Conv(
    (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_1): C3(
    (cv1): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (1): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (2): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (classifier): Sequential(
    (0): Linear(in_features=802816, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

2. 查看模型详情

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 32, 112, 112]             864BatchNorm2d-2         [-1, 32, 112, 112]              64SiLU-3         [-1, 32, 112, 112]               0Conv-4         [-1, 32, 112, 112]               0Conv2d-5         [-1, 32, 112, 112]           1,024BatchNorm2d-6         [-1, 32, 112, 112]              64SiLU-7         [-1, 32, 112, 112]               0Conv-8         [-1, 32, 112, 112]               0Conv2d-9         [-1, 32, 112, 112]           1,024BatchNorm2d-10         [-1, 32, 112, 112]              64SiLU-11         [-1, 32, 112, 112]               0Conv-12         [-1, 32, 112, 112]               0Conv2d-13         [-1, 32, 112, 112]           9,216BatchNorm2d-14         [-1, 32, 112, 112]              64SiLU-15         [-1, 32, 112, 112]               0Conv-16         [-1, 32, 112, 112]               0Bottleneck-17         [-1, 32, 112, 112]               0Conv2d-18         [-1, 32, 112, 112]           1,024BatchNorm2d-19         [-1, 32, 112, 112]              64SiLU-20         [-1, 32, 112, 112]               0Conv-21         [-1, 32, 112, 112]               0Conv2d-22         [-1, 32, 112, 112]           9,216BatchNorm2d-23         [-1, 32, 112, 112]              64SiLU-24         [-1, 32, 112, 112]               0Conv-25         [-1, 32, 112, 112]               0Bottleneck-26         [-1, 32, 112, 112]               0Conv2d-27         [-1, 32, 112, 112]           1,024BatchNorm2d-28         [-1, 32, 112, 112]              64SiLU-29         [-1, 32, 112, 112]               0Conv-30         [-1, 32, 112, 112]               0Conv2d-31         [-1, 32, 112, 112]           9,216BatchNorm2d-32         [-1, 32, 112, 112]              64SiLU-33         [-1, 32, 112, 112]               0Conv-34         [-1, 32, 112, 112]               0Bottleneck-35         [-1, 32, 112, 112]               0Conv2d-36         [-1, 32, 112, 112]           1,024BatchNorm2d-37         [-1, 32, 112, 112]              64SiLU-38         [-1, 32, 112, 112]               0Conv-39         [-1, 32, 112, 112]               0Conv2d-40         [-1, 64, 112, 112]           4,096BatchNorm2d-41         [-1, 64, 112, 112]             128SiLU-42         [-1, 64, 112, 112]               0Conv-43         [-1, 64, 112, 112]               0C3-44         [-1, 64, 112, 112]               0Linear-45                  [-1, 100]      80,281,700ReLU-46                  [-1, 100]               0Linear-47                    [-1, 4]             404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

3. 正式训练

model.train()model.eval()训练营往期文章中有详细的介绍。

📌如果将优化器换成 SGD 会发生什么呢?请自行探索接下来发生的诡异事件的原因

import copyoptimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数epochs     = 20train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)print('Done')

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)

epoch_test_acc, epoch_test_loss
(0.9333333333333333, 0.31915266352798577)
  • 前期准备:首先设置 GPU,如果设备支持则使用 GPU,否则使用 CPU。然后导入数据,对数据进行预处理,包括数据增强和归一化等操作。最后划分数据集,将数据集分为训练集和测试集,并创建数据加载器。
  • 搭建模型:搭建了一个包含 C3 模块的自定义模型,模型由卷积层、C3 模块和全连接层组成。其中 C3 模块由多个瓶颈层组成,可以提高模型的准确率。
  • 训练模型:编写了训练函数和测试函数,分别用于训练和测试模型。在训练过程中,使用 Adam 优化器和交叉熵损失函数,对模型进行了 20 个 epoch 的训练,并保存了最佳模型。
  • 结果可视化:对训练和测试结果进行了可视化,包括准确率和损失函数的变化曲线。最后,使用最佳模型对测试集进行测试,得到了最终的准确率和损失函数值
http://www.lryc.cn/news/524193.html

相关文章:

  • 云计算与物联网技术的融合应用(在工业、农业、家居、医疗、环境、城市等整理较全)
  • 基于python+Django+mysql鲜花水果销售商城网站系统设计与实现
  • Golang:报错no required module provides package github.com/xx的解决方法
  • 数据结构与算法(2):顺序表与链表
  • 华为OD机试E卷 --过滤组合字符串--24年OD统一考试(Java JS Python C C++)
  • QT跨平台应用程序开发框架(3)—— 信号和槽
  • 从 0 开始实现一个 SpringBoot + Vue 项目
  • 【无标题】微调是迁移学习吗?
  • 虚幻基础1:hello world
  • C链表的一些基础知识
  • JDK长期支持版本(LTS)
  • 【超详细】Python datetime(当前日期、时间戳转换、前一天日期等)【附:时区原理详解】
  • 【Excel】【VBA】双列排序:坐标从Y从大到小排列之后相同Y坐标的行再对X从小到大排列
  • 为什么相关性不是因果关系?人工智能中的因果推理探秘
  • Nginx调优
  • 联德胜w801开发板(四)实现腾讯云mqtt的订阅和发布
  • LLM框架对比选择:MaxKB、Dify、FastGPT、RagFlow【RAG+AI工作流+Agent]
  • C语言内存之旅:从静态到动态的跨越
  • 研1如何准备才能找到大厂实习?
  • 游戏为什么失败?回顾某平庸游戏
  • QT 使用QTableView读取数据库数据,表格分页,跳转,导出,过滤功能
  • 【前端】CSS学习笔记(1)
  • Ubuntu离线docker compose安装DataEase 2.10.4版本笔记
  • C 语言雏启:擘画代码乾坤,谛观编程奥宇之初瞰
  • npm操作大全:从入门到精通
  • AI绘画入门:探索数字艺术新世界(1/10)
  • Linux应用编程(五)USB应用开发-libusb库
  • 项目-03-封装echarts组件并使用component动态加载组件
  • 使用 Blazor 和 Elsa Workflows 作为引擎的工作流系统开发
  • Node.js 完全教程:从入门到精通