当前位置: 首页 > news >正文

bilstm -crf 的torch官方的教程 不支持 batchsize 。。。。有更效率更高的方案吗

根据您的需求,您正在寻找一个支持批量处理(batch size)的BiLSTM-CRF模型的PyTorch教程。以下是一些资源,它们提供了更高效的解决方案,包括批量处理的支持:

1. **a-PyTorch-Tutorial-to-Sequence-Labeling**:这个GitHub仓库提供了一个关于序列标注的PyTorch教程,其中包括了BiLSTM-CRF模型的实现。教程中详细解释了如何准备数据、构建模型以及训练模型,支持批量处理。[GitHub - sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling](https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling)

GitHub - sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling: Empower Sequence Labeling with Task-Aware Neural Language Model | a PyTorch Tutorial to Sequence Labeling

2. **cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF**:这个资源是上述教程的中文翻译版本,同样提供了关于如何使用BiLSTM-CRF进行序列标注的详细指导,包括批量处理的支持。[GitHub - ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF](https://github.com/ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF)

https://github.com/ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF

3. **NLP with PyTorch: A Comprehensive Guide**:这个DataCamp教程提供了一个全面的指南,介绍了如何使用PyTorch进行自然语言处理,包括数据准备、模型定义、训练和预测。教程中提到了如何使用`DataLoader`来创建数据集,这对于批量处理是非常有用的。[DataCamp - NLP with PyTorch: A Comprehensive Guide](https://www.datacamp.com/tutorial/nlp-with-pytorch-a-comprehensive-guide) 

https://www.datacamp.com/tutorial/nlp-with-pytorch-a-comprehensive-guide

改成批处理关键代码  previous_score = score[t - 1].view(batch_size, -1, 1)

def viterbi_decode(self, h: FloatTensor, mask: BoolTensor) -> List[List[int]]:"""decode labels using viterbi algorithm:param h: hidden matrix (batch_size, seq_len, num_labels):param mask: mask tensor of each sequencein mini batch (batch_size, batch_size):return: labels of each sequence in mini batch"""batch_size, seq_len, _ = h.size()# prepare the sequence lengths in each sequenceseq_lens = mask.sum(dim=1)# In mini batch, prepare the score# from the start sequence to the first labelscore = [self.start_trans.data + h[:, 0]]path = []for t in range(1, seq_len):# extract the score of previous sequence# (batch_size, num_labels, 1)previous_score = score[t - 1].view(batch_size, -1, 1)# extract the score of hidden matrix of sequence# (batch_size, 1, num_labels)h_t = h[:, t].view(batch_size, 1, -1)# extract the score in transition# from label of t-1 sequence to label of sequence of t# self.trans_matrix has the score of the transition# from sequence A to sequence B# (batch_size, num_labels, num_labels)score_t = previous_score + self.trans_matrix + h_t# keep the maximum value# and point where maximum value of each sequence# (batch_size, num_labels)best_score, best_path = score_t.max(1)score.append(best_score)path.append(best_path)

torchcrf 使用 支持批处理,torchcrf的简单使用-CSDN博客文章浏览阅读9.7k次,点赞5次,收藏33次。本文介绍了如何在PyTorch中安装和使用TorchCRF库,重点讲解了CRF模型参数设置、自定义掩码及损失函数的计算。作者探讨了如何将CRF的NLL损失与交叉熵结合,并通过自适应权重优化训练过程。虽然在单任务中效果不显著,但对于多任务学习提供了有价值的方法。https://blog.csdn.net/csdndogo/article/details/125541213

torchcrf的简单使用-CSDN博客

为了防止文章丢失 ,吧内容转发在这里

https://blog.csdn.net/csdndogo/article/details/125541213

. 安装torchcrf,模型使用
安装:pip install TorchCRF
CRF的使用:在官网里有简单的使用说明
注意输入的格式。在其他地方下载的torchcrf有多个版本,有些版本有batch_first参数,有些没有,要看清楚有没有这个参数,默认batch_size是第一维度。
这个代码是我用来熟悉使用crf模型和损失函数用的,模拟多分类任务输入为随机数据和随机标签,所以最后的结果预测不能很好的跟标签对应。

import torch
import torch.nn as nn
import numpy as np
import random
from TorchCRF import CRF
from torch.optim import Adam
seed = 100

def seed_everything(seed=seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True

num_tags = 5
model = CRF(num_tags, batch_first=True)  # 这里根据情况而定
seq_len = 3
batch_size = 50
seed_everything()
trainset = torch.randn(batch_size, seq_len, num_tags)  # features
traintags = (torch.rand([batch_size, seq_len])*4).floor().long()  # (batch_size, seq_len)
testset = torch.randn(5, seq_len, num_tags)  # features
testtags = (torch.rand([5, seq_len])*4).floor().long()  # (batch_size, seq_len)

# 训练阶段
for e in range(50):
    optimizer = Adam(model.parameters(), lr=0.05)
    model.train()
    optimizer.zero_grad()
    loss = -model(trainset, traintags)
    print('epoch{}: loss score is {}'.format(e, loss))
    loss.backward()
    torch.nn.utils.clip_grad_norm_(model.parameters(),5)
    optimizer.step()

#测试阶段
model.eval()
loss = model(testset, testtags)
model.decode(testset)


1.1模型参数,自定义掩码mask注意事项
def forward(self, emissions, labels: LongTensor, mask: BoolTensor) 
1
分别为发射矩阵(各标签的预测值),标签,掩码(注意这里的mask类型为BoolTensor)
注意:此处自定义mask掩码时,使用LongTensor类型的[1,1,1,1,0,0]会报错,需要转换成ByteTensor,下面是一个简单的获取mask的函数,输入为标签数据:

    def get_crfmask(self, labels):
        crfmask = []
        for batch in labels:
            res = [0 if d == -1 else 1 for d in batch]
            crfmask.append(res)
        return torch.ByteTensor(crfmask)


运行运行
2. CRF的损失函数是什么?
损失函数由真实转移路径值和所有可能情况路径转移值两部分组成,损失函数的公式为

分子为真实转移路径值,分母为所有路径总分数,上图公式在crf原始代码中为:

    def forward(
        self, h: FloatTensor, labels: LongTensor, mask: BoolTensor) -> FloatTensor:

        log_numerator = self._compute_numerator_log_likelihood(h, labels, mask)
        log_denominator = self._compute_denominator_log_likelihood(h, mask)

        return log_numerator - log_denominator

CRF损失函数值为负对数似然函数(NLL),所以如果原来的模型损失函数使用的是交叉熵损失函数,两个损失函数相加时要对CRF返回的损失取负。

    loss = -model(trainset, traintags)
1
3. 如何联合CRF的损失函数和自己的网络模型的交叉熵损失函数进行训练?
我想在自己的模型上添加CRF,就需要联合原本的交叉熵损失函数和CRF的损失函数,因为CRF输出的时NLL,所以在模型在我仅对该损失函数取负之后和原先函数相加。

        loss2 = -crf_layer(log_prob, label, mask=crfmask)
        loss1 = loss_function(log_prob.permute(0, 2, 1), label)
        loss = loss1 + loss2
        loss.backward()

缺陷: 效果不佳,可以尝试对loss2添加权重。此处贴一段包含两个损失函数的自适应权重训练的函数。

3.1.自适应损失函数权重
由于CRF返回的损失与原来的损失数值不在一个量级,所以产生了自适应权重调整两个权重的大小来达到优化的目的。自适应权重原本属于多任务学习部分,未深入了解,代码源自某篇复现论文的博客。

class AutomaticWeightedLoss(nn.Module):
    def __init__(self, num=2):
        super(AutomaticWeightedLoss, self).__init__()
        params = torch.ones(num, requires_grad=True)
        self.params = torch.nn.Parameter(params)

    def forward(self, *x):
        loss_sum = 0
        for i, loss in enumerate(x):
            loss_sum += 0.5 / (self.params[i] ** 2) * loss + torch.log(1 + self.params[i] ** 2)
        return loss_sum

http://www.lryc.cn/news/504420.html

相关文章:

  • Python面试常见问题及答案6
  • 代码随想录算法训练营第三天 | 链表理论基础 | 203.移除链表元素
  • 1. 机器学习基本知识(5)——练习题(1)
  • vue 自定义组件image 和 input
  • 系列3:基于Centos-8.6 Kubernetes使用nfs挂载pod的应用日志文件
  • Jfinal项目整合Redis
  • 在Ubuntu服务器上备份文件到自己的百度网盘
  • Unity 模板测试透视效果(URP)
  • 《计算机视觉证书:开启职业发展新航道》
  • .NET6 WebApi第1讲:VSCode开发.NET项目、区别.NET5框架【两个框架启动流程详解】
  • Git-分布式版本控制工具
  • C++ 第10章 对文件的输入输出
  • 【机器学习】手写数字识别的最优解:CNN+Softmax、Sigmoid与SVM的对比实战
  • android 聊天界面键盘、表情切换丝滑
  • Web项目图片视频加载缓慢/首屏加载白屏
  • 关于Git分支合并,跨仓库合并方式
  • [网络] UDP协议16位校验和
  • Vue 3 中的 `update:modelValue` 事件详解
  • vue3+vite+ts 使用webrtc-streamer播放海康rtsp监控视频
  • QT数据库(四):QSqlRelationalTableModel 类
  • 蓝桥杯刷题——day5
  • YOLO11改进-模块-引入多尺度差异融合模块MDFM
  • vlan和vlanif
  • Apache Kylin最简单的解析、了解
  • MySQL——连接
  • 前端微服务实战:大型应用的拆分与治理
  • Linux shell的七大功能 --- history
  • C++ webrtc开发(非原生开发,linux上使用libdatachannel库)
  • C语言刷题
  • LabVIEW实现RFID通信