当前位置: 首页 > news >正文

tensorRT安装详解(linux与windows)

目录

tensorRT介绍

前置准备

安装cuda与cudnn

linux

windows

cuda版本查看

下载安装包

linux安装

安装

安装验证

windows安装

安装

环境变量配置

安装验证


tensorRT介绍

有关tensorRT的介绍见

TensorRT简介-CSDN博客

前置准备

安装cuda与cudnn

linux

Linux下安装cuda和对应版本的cudnn_linux怎么在自己的环境中安装cuda和cudnn-CSDN博客

windows

windows安装cuda与cudnn-CSDN博客

cuda版本查看

linux与windows均可使用以下命令查看cuda版本

nvcc -V

下载安装包

进官网查看对应自己cuda版本的tensorRT

TensorRT Download | NVIDIA Developer

官网页面打开如下所示, 每个版本的tensorRT都有对应操作系统与cuda版本的说明

注意,win11只能只有tensorRT10支持

linux下我们以安装tensorRT8为例,如下图所示 ,第一个红色框是cuda11对应的安装包,第二个红色方框是cuda12对应的安装包,找到自己对应cuda版本的安装包即可,建议下载tar包,安装比较方便

同理,windows11下只要tensorRT10支持,如下图所示,仍旧找到自己的安装包下载即可

linux安装

安装

下载好安装包后,将文件解压至 /usr/local,如下所示

 然后将tensorrt的头文件和库文件加入到环境变量中,配置~/.bashrc文件

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/TensorRT-8.5.3.1/lib
export C_INCLUDE_PATH=$C_INCLUDE_PATH:/usr/local/TensorRT-8.5.3.1/include
export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/usr/local/TensorRT-8.5.3.1/include

 添加完路径后使配置文件生效

source ~/.bashrc

安装验证

进入到 /usr/local/TensorRT-8.5.3.1/samples/sampleOnnxMNIST路径下,执行

sudo make

进入/usr/local/TensorRT-8.5.3.1/bin目录,运行可执行文件sample_onnx_mnist,如果编译和运行过程都没有问题则说明tensorrt安装成功,运行结果如下

 

windows安装

安装

首先找到自己cuda的安装路径,打开cmd命令行窗口,输入

which nvcc

如果cuda安装成功,会显示cuda的安装路径

/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.1/bin/nvcc

 然后解压下载的tensorRT安装包,将tensorRT中lib目录和include目录中的文件内容都拷贝到cuda对应的目录文件下

环境变量配置

右键“此电脑”,点击"属性",点击“高级系统设置”,即可打开系统属性面板

也可以在搜索框输入“编辑系统环境变量”,也可打开下述面板

然后点击环境变量

用户变量一栏,点击Path

 点击“新建”,将对应TensorRT解压的文件夹下的bin目录路径,以及cuda安装目录下的lib目录、include目录,以及lib下的x64目录路径设置进去,如下所示

 然后逐步点击“确定”,直到所有面板关闭,一定不要直接点右上角关闭,否则配置会失败

安装验证

打开cmd命令窗口,输入

trtexec --help

如果显示以下帮助信息,说明TensorRT中的trtexec程序可用,否则检查trtexec程序(TensorRT解压安装包的bin目录下)的环境变量是否配置正确

接下来代码验证trtexec是否可成功执行,打开python,写下如下python代码,更多代码细节见

PyTorch模型转换ONNX 入门-CSDN博客

import torch
import torchvision.models as models
import onnx
import onnxruntime# 加载 PyTorch 模型
model = models.resnet18(pretrained=True)
model.eval()# 定义输入和输出张量的名称和形状
input_names = ["input"]
output_names = ["output"]
batch_size = 1
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)# 将 PyTorch 模型转换为 ONNX 格式
torch.onnx.export(model,  # 要转换的 PyTorch 模型torch.randn(input_shape),  # 模型输入的随机张量"resnet18.onnx",  # 保存的 ONNX 模型的文件名input_names=input_names,  # 输入张量的名称output_names=output_names,  # 输出张量的名称dynamic_axes={input_names[0]: {0: "batch_size"}, output_names[0]: {0: "batch_size"}}  # 动态轴,即输入和输出张量可以具有不同的批次大小
)# 加载 ONNX 模型
onnx_model = onnx.load("resnet18.onnx")
onnx_model_graph = onnx_model.graph
onnx_session = onnxruntime.InferenceSession(onnx_model.SerializeToString())# 使用随机张量测试 ONNX 模型
x = torch.randn(input_shape).numpy()
onnx_output = onnx_session.run(output_names, {input_names[0]: x})[0]print(f"PyTorch output: {model(torch.from_numpy(x)).detach().numpy()[0, :5]}")
print(f"ONNX output: {onnx_output[0, :5]}")

如果代码运行不成功,查看pytorch是否安装、onnx模块是否安装、onnxruntime模块是否安装

如果代码运行成功,会在本地输出一个mymodel.onnx文件

接下来打开该文件所在路径,打开cmd,输入

trtexec --onnx=mymodel.onnx --saveEngine=model.trt

如果运行成功,说明TensorRT安装成功

如果这里运行失败,检查环境变量是否配置正确 

参考

ubuntu20.04 安装TensorRT c++库 - Wangtn - 博客园 (cnblogs.com)

TensorRT安装部署指南(Windows10) - 知乎 (zhihu.com)

http://www.lryc.cn/news/466153.html

相关文章:

  • MYSQL OPTIMIZE TABLE 命令重建表和索引
  • 开发指南075-各种动画效果
  • 使用 el-upload 如何做到发送一次请求上传多个文件
  • GEE引擎架设好之后进游戏时白屏的解决方法——gee引擎白屏修复
  • Linux LVS 通用命令行
  • laravel .env环境变量原理
  • Nuxt.js 应用中的 app:templatesGenerated 事件钩子详解
  • 新时代AI桌宠:XGO Rider让你的办公室瞬间高大上
  • matlab的resample函数
  • idea怎么取消自动打开项目
  • 蓄电池在线监测系统 各大UPS铅酸蓄电池监测 保障安全
  • Python基础Day13
  • 有趣的css - 跷跷板加载动画
  • 与机器学习的邂逅--自适应神经网络结构的深度解析
  • 用python怎么实现办公自动化【批量生成出货清单】
  • 【Qt】控件——Qt输入类控件、常见的输入类控件、输入类控件的使用、Line Edit、Text Edit、Combo Box、Spin Box
  • 单臂交换知识点
  • CentOS7 上安装GitLab的经历
  • 用python-pptx轻松统一调整演示文档配色方案
  • MySQL-30.索引-介绍
  • 6-2.Android 对话框之基础对话框问题清单(UI 线程问题、外部取消、冲突问题、dismiss 方法与 hide 方法)
  • git配置以及如何删除git
  • 深入理解new Function
  • 服务器训练神经网络必备工具Screen使用教程
  • 跨越数字鸿沟,FileLink文件摆渡系统——您的数据安全高效传输新选择
  • 递归之吃桃问题
  • CZX前端秘籍2
  • CAD图纸防泄密用什么加密软软件?2024年10款图纸加密软件排行榜
  • WebGL编程指南 - WebGL入门
  • mysql--数据类型