当前位置: 首页 > news >正文

国产大模型基础能力大比拼 - 计数:通义千文 vs 文心一言 vs 智谱 vs 讯飞-正经应用场景的 LLM 逻辑测试

在大语言模型(LLM)不断涌现的时代,如何评估这些国产大模型的逻辑推理能力,尤其是在处理基础计数问题上的表现,成为了一个备受关注的话题。随着越来越多的国产大模型进入市场,比较它们在不同任务中的表现尤为重要。本文聚焦于计数这一基础能力,对通义千文、文心一言、智谱以及讯飞的多个版本进行了对比测试,探索它们在处理简单逻辑题时的表现,并特别考察了推理链(Chain-of-Thought,COT)方法的必要性,以揭示这些模型在实际应用场景中的逻辑推理深度。

主要是非娱乐的业务场景,对于准确性、基础逻辑能力和理解能力要求较高,如果一个模型通过提示也无法变得更好,就很难在生产环境使用了

计数测试场景:“一一遇见给一个小孩子一个冰淇淋和一个糖果”

在测试中,我们使用了一道简单的计数题:“一一遇见给一个小孩子一个冰淇淋和一个糖果”,要求模型回答这句话中一共有几个“一”。正确答案是 5,其中包含了“一一遇见”、“一个小孩子”、“一个冰淇淋”以及“一个糖果”。这种类型的题目虽然简单,但对于大语言模型来说,能否正确回答却反映了模型对文本细节的理解能力。

第一轮测试结果

  • GPTo1-mini:5(正确)
    GPTo1-mini
    GPTo1-mini 成功给出了正确答案“5”。这说明它在处理基础计数任务时表现非常稳定,展示了较强的文本细节理解能力。

  • GPT4o:4(错误)
    GPT4o
    GPT4o 在这次测试中错误地给出了答案“4”。这表明它在处理重复性计数的细节时可能存在一些不足。

  • 通义千文2.5:3(错误)
    通义千文2.5
    通义千文2.5 给出了错误答案“3”,并详细解释了其原因,显然对于“一一”的解释存在偏差。这也反映出它在识别特定表达时缺乏对上下文的全面理解。

  • 文心一言3.5:5(正确)
    文心一言3.5
    文心一言3.5 成功给出了正确的答案,展示了它在基础计数和对“一”的理解方面的优异表现。

  • 智谱GLM-4-plus:3(错误)
    智谱GLM-4-plus
    智谱GLM-4-plus 在这一轮中错误地给出了答案“3”。这表明它在处理计数时对相似的重复元素的识别存在一定的挑战。

  • 讯飞4.0Ultra:5(正确)
    讯飞4.0Ultra
    讯飞4.0Ultra 准确地回答了“5”,这说明它具备良好的文本理解和计数能力,能够正确分析和识别句中的重复元素。

  • 讯飞4.0-Lite:2(错误)
    讯飞4.0-Lite
    讯飞4.0-Lite 显然未能正确理解题意,只给出了答案“2”,这表明其在处理细节分析方面存在明显的不足。

败者组再战:COT 提示的效果

为了进一步考察这些模型的推理能力,我们对未能通过第一轮测试的模型进行了提示调整,引导它们使用链式推理(COT)的方法,即“请仔细思考”。这一提示的目的在于测试模型在获得引导和提示后的表现是否有所改善,从而验证 COT 的有效性。

  • GPT4o:5(正确)
    GPT4o-COT
    经过提示引导,GPT4o 成功得出了正确答案“5”。这表明链式推理的提示能够帮助 GPT4o 更好地理解和分析文本细节。

  • 讯飞4.0-Lite:2(错误)
    讯飞4.0-Lite-COT
    尽管提示了仔细思考,讯飞4.0-Lite 依然没有改变其错误答案。这说明即使有 COT 提示,该模型在处理类似计数任务时仍然存在不足,可能与其整体推理能力的局限性有关。

  • 智谱GLM-4:5(正确)
    智谱GLM-4-COT
    在 COT 提示下,智谱GLM-4 成功得出了正确答案,这说明链式推理提示能够帮助其更好地逐步分析文本,从而提高正确率。

  • 通义千文2.5:5(正确)
    通义千文2.5-COT
    通义千文2.5 在链式推理提示下也得出了正确答案“5”,进一步表明该模型在获得适当提示时,其逻辑推理能力得到了有效激发。

总结:COT 能力的重要性

在这次测试中,GPTo1-mini、文心一言3.5、讯飞4.0Ultra 成功通过了第一轮测试,而 GPT4o、智谱GLM-4、通义千文2.5 则在经过 COT 提示后取得了正确答案。这说明大多数大模型在面临逻辑推理和计数任务时,借助 COT 提示能够显著提高其正确率。链式推理提示可以让模型逐步分析问题,从而减少犯错的概率。

唯一的失败者是 讯飞4.0-Lite,即使在提示下也未能改善其答案,这反映了其在推理链方面的不足。这表明该模型在面对需要复杂推理的任务时,仍有待提高,这可能需要进一步的算法优化和训练改进。

其实大模型还有不少,比如扣子等,但效果不是很理想

补充:免费模型

目前文心、讯飞、智谱都有免费版本,正如这次的测试结果一样,免费版本下的glm比较靠谱,相对来说文心和讯飞的免费版本性能就一般,除非娱乐或简单场景,难以应用。

待改善部分

  • 更多的大模型 - 因为某些原因,有些大模型无法体验或使用,尤其是比较想用到的盘古大模型
  • 更好的比对方式 - 如果国产大模型有类似竞技场的就好了,但国外的那个因为网络和接入原因并不能够很好的测试国产商用大模型
  • 更多的测试项目 - 本文只是给新人提一个思路,具体的可以扩散性思维发挥

最后强调一下,这个测试并不是很严谨,仅仅是一次简单的测试,不构成任何的商业建议,如果使用免费版本,glm挺不错,开源的模型llama3.2:3b在提示一步步计算时就可以胜任了,还是希望过程大模型越来越好吧

http://www.lryc.cn/news/466090.html

相关文章:

  • YOLO11改进 | 注意力机制 | 正确的 Self-Attention 与 CNN 融合范式,性能速度全面提升【独家创新】
  • 0基础学java之Day11
  • python主流框架Django:ORM框架关联查询与管理器
  • 如何有效维护您的WordPress在线商店内容:提高客户参与度与转化率的实用技巧
  • 【Java】认识异常
  • 20 Shell Script输入与输出
  • HCIP-HarmonyOS Application Developer 习题(十六)
  • 没有什么可以抵达乌托邦,包括AI
  • 家庭事务管理系统|基于java和vue的家庭事务管理系统设计与实现(源码+数据库+文档)
  • doris创建异步物化视图(加速数据低频变更的复杂实时计算)
  • PhpSpreadsheet创建带复杂表头的excel数据
  • BurpSuite渗透工具的简单使用
  • 洞察云上风险,主机安全尽在掌握
  • 使用kimi编辑助手,开始搭建一个微信小程序!第一天
  • 【已解决】libev not found
  • qt QVariant详解
  • 再获殊荣!通付盾当选信息技术应用创新工作委员会技术活动单位称号
  • PostgreSQL模板数据库template0和template1的异同点
  • 手机ip切换成全局模式怎么弄
  • 前端学习笔记(1.0)
  • 推动TMS-EEG数据预处理标准化
  • 国产电脑能装win系统吗_国产电脑安装windows要求及方法
  • C#Winform的控件基类Control
  • 汽车电子行业的LIMS:提升质量与效率的关键助力
  • 移动端面试问题笔记(一)
  • 从壹开始解读Yolov11【源码研读系列】——cfg:模型配置加载功能
  • 【数据库设计】逻辑结构设计
  • uni-app之旅-day07-购物车页面
  • 【机器学习】并行计算(parallel computation)Part2
  • AI学习指南深度学习篇-迁移学习的应用场景