当前位置: 首页 > news >正文

【ChatGPT】Python 实现计算两线段的变换矩阵

作为一个数学专家,请给出下面的这个问题的数学解法;
要求如下:
1. 给出数学推理公式
2. 给出 python 的实现方式已知条件:
1. 三维空间中,线段L1,L1 由点 A1 (ax1, ay1, az1) 与 B1 (bx1, by1, bz1) 组成; 
2. 三维空间中,空间线段L2, L2 由 点 A2 (ax2, ay2, az2) 与 B2 (bx2, by2, bz2) 组成; 
3. 线段 L2 是由线段 L1  通过 4 * 4 的 变化矩阵 M 得到求解变换矩阵 M,并将 M 分解为平移矩阵与旋转矩阵;

回答如下:

To solve the problem of finding the transformation matrix that maps line segment to line segment in 3D space, we will utilize concepts from linear algebra. The transformation can be described as a combination of rotation and translation.

1. Mathematical Formulation

Representation of Points: Let:

Points of line segment be and .
Points of line segment be and .
Parameters of Lines: The direction vectors of the line segments are:

Translation : The translation component can be computed as:

Rotation Matrix : To find the rotation matrix that aligns with , we can use the following approach:

Normalize the direction vectors:
Compute the rotation axis using the cross product:
Calculate the angle between the two direction vectors using the dot product:
Use Rodrigues’ rotation formula to construct the rotation matrix .


### 2. Python Implementation
python 实现如下:
```python
import numpy as npdef compute_transformation(A1, B1, A2, B2):# Convert points to numpy arraysA1 = np.array(A1)B1 = np.array(B1)A2 = np.array(A2)B2 = np.array(B2)# Compute direction vectorsd1 = B1 - A1d2 = B2 - A2# Compute translation componentT = A2 - A1# Normalize direction vectorsnorm_d1 = np.linalg.norm(d1)norm_d2 = np.linalg.norm(d2)if norm_d1 == 0 or norm_d2 == 0:raise ValueError("Direction vectors must be non-zero")u = d1 / norm_d1v = d2 / norm_d2# Compute rotation axis and anglerotation_axis = np.cross(u, v)angle = np.arccos(np.clip(np.dot(u, v), -1.0, 1.0))# If the rotation axis is a zero vector, u and v are parallelif np.linalg.norm(rotation_axis) == 0:R = np.eye(3)  # No rotation neededelse:rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)K = np.array([[0, -rotation_axis[2], rotation_axis[1]],[rotation_axis[2], 0, -rotation_axis[0]],[-rotation_axis[1], rotation_axis[0], 0]])R = (np.eye(3) + np.sin(angle) * K + (1 - np.cos(angle)) * np.dot(K, K))return R, TA1 = (1, 2, 3)
B1 = (4, 5, 6)
A2 = (7, 8, 9)
B2 = (10, 11, 12)R, T = compute_transformation(A1, B1, A2, B2)print("Rotation Matrix R:")
print(R)
print("\nTranslation Vector T:")
print(T)

3. 对代码的解释:

The function compute_transformation takes the endpoints of two line segments as inputs.
It calculates the direction vectors, translation vector, and rotation matrix.
The rotation matrix is calculated using the Rodrigues’ rotation formula approach.
The function returns the rotation matrix and translation vector .
This code should give you a good foundation to find the transformation matrix that maps segment to . Adjust the input values of and to test different segments.

http://www.lryc.cn/news/448778.html

相关文章:

  • 大数据Hologres(二):Hologres 快速入门
  • 华为仓颉语言入门(7):深入理解 do-while 循环及其应用
  • 在传销案件中数据库取证的分步指南
  • 数据结构与算法——Java实现 21.栈
  • 实验一 网络基础及仿真模拟软件Packet Tracer 入门
  • 建立分支提交代码
  • 认识 Linux操作系统
  • AI时代程序员的核心竞争力提升与保持之道
  • 状态模式原理剖析
  • 若伊(前后端分离)学习笔记
  • Elasticsearch学习笔记(2)
  • Vue devtools 插件
  • Ubuntu 16.04安装填坑记录
  • python的pyinstaller
  • Vue3(五) 组件通信大汇总
  • 红队信息搜集扫描使用
  • Python自学查漏9.28
  • Java文件I/O处理之RandomAccessFile【随意存取文件】
  • Android页面跳转与返回机制详解
  • Elasticsearch学习笔记(1)
  • react是一种语言?
  • 如何区分这个ip是真实ip,不是虚假的ip
  • 【软件测试】详解软件测试中的测试级别
  • 一条sql在MySQL中是怎么执行的
  • Git | Dockerized GitLab 安装使用(简单实操版)
  • SpringCloud简介 Ribbon Eureka 远程调用RestTemplate类 openfeign
  • 微信小程序开发系列之-微信小程序性能优化
  • 线程池面试集
  • 从密码学看盲拍合约:智能合约的隐私与安全新革命!
  • c++学习笔记(47)