当前位置: 首页 > news >正文

Kotlin OpenCV 图像图像50 Haar 级联分类器模型

Kotlin OpenCV 图像图像50 Haar 级联分类器模型

  • 1 OpenCV Haar 级联分类器模型
  • 2 Kotlin OpenCV Haar 测试代码

1 OpenCV Haar 级联分类器模型

Haar级联分类器是一种用于对象检测(如人脸检测)的机器学习算法。它由Paul Viola和Michael Jones在2001年提出,通常用于实时检测,因为它速度快且性能良好。

基本原理解释
Haar特征Haar特征是从图像中提取的简单矩形特征,通过比较相邻区域的像素值来描述图像的局部特征。
常见的Haar特征有边缘特征、线条特征和四边形特征。
每个Haar特征值由区域内像素的加权和计算得到,具体公式为特征值 = 黑色区域像素值总和 - 白色区域像素值总和。
积分图(Integral Image)积分图是一种图像表示方法,方便快速计算矩形区域的像素和。
通过积分图,可以在常数时间内计算任意矩形区域的像素和。
级联分类器(Cascade Classifier)级联分类器由一系列弱分类器(如决策树桩)组成,每个弱分类器使用一个或多个Haar特征进行分类。
弱分类器按顺序排列,每个分类器将图像区域分为正例(目标对象)和负例(非目标对象)。
如果某个区域被认为是负例,则立即停止检测;如果被认为是正例,则继续传递到下一个分类器。
这种级联结构大大提高了检测速度,因为大部分非目标区域在早期就被排除。

OpenCV Haar 级联分类器模型
在这里插入图片描述

文件夹用途特点
lbpcascades包含基于局部二值模式 (Local Binary Patterns, LBP) 的级联分类器文件。LBP 是一种有效的纹理特征描述符,在对象检测中表现良好。计算效率高: LBP 特征计算简单,因此在对象检测时速度较快。
鲁棒性: 对光照变化和其他环境变化有较好的鲁棒性。
常用分类器: 人脸检测等。
hogcascades包含基于方向梯度直方图 (Histogram of Oriented Gradients, HOG) 特征的级联分类器文件。HOG 特征在检测行人等对象时表现良好。特征描述能力强: HOG 特征能够捕捉对象的形状和外观信息。
高检测精度: 尤其在检测行人方面有较高的精度。
haarcascades_cuda包含利用 CUDA 加速的 Haar 特征级联分类器文件。这些分类器利用 GPU 进行加速计算,提高检测速度。 类似于 haarcascades 文件夹中的文件,是加速版本。高性能: 利用 GPU 的并行计算能力,大幅提升检测速度。
需要支持 CUDA 的 GPU: 需要系统安装 CUDA 并支持相应的 GPU 硬件。
haarcascades包含基于 Haar 特征的级联分类器文件。这是 OpenCV 中最常用的对象检测分类器之一。历史悠久: Haar 级联分类器是最早用于人脸检测的算法之一。
计算复杂度适中: 相比 LBP 更复杂,但特征描述能力也更强。
广泛应用: 用于人脸、眼睛、微笑等对象的检测。

haarcascades_cuda 和 haarcascades 文件的主要区别在于它们是否利用 CUDA 加速进行对象检测。

haarcascades/haarcascades_cuda 文件夹用途
haarcascade_eye.xml用于检测人眼。
haarcascade_eye_tree_eyeglasses.xml用于检测戴眼镜的人眼。
haarcascade_frontalcatface.xml用于检测猫的正面脸部。
haarcascade_frontalcatface_extended.xml用于检测猫的正面脸部(扩展版本)。
haarcascade_frontalface_alt.xml用于检测人脸的另一个版本。
haarcascade_frontalface_alt2.xml用于检测人脸的另一个替代版本。
haarcascade_frontalface_alt_tree.xml用于检测人脸的另一个替代版本(树状结构)。
haarcascade_frontalface_default.xml用于检测人脸的默认版本。
haarcascade_fullbody.xml用于检测人体的完整体。
haarcascade_lefteye_2splits.xml用于检测左眼(两部分)。
haarcascade_license_plate_rus_16stages.xml用于检测俄罗斯车牌(16阶段)。
haarcascade_lowerbody.xml用于检测人体的下半身。
haarcascade_profileface.xml用于检测人脸的侧面(侧脸)。
haarcascade_righteye_2splits.xml用于检测右眼(两部分)。
haarcascade_russian_plate_number.xml用于检测俄罗斯车牌号码。
haarcascade_smile.xml用于检测微笑。
haarcascade_upperbody.xml用于检测人体的上半身。
hogcascades文件夹用途
hogcascade_pedestrians.xml用于在图像或视频中检测行人。
lbpcascades文件夹用途
lbpcascade_frontalcatface.xml用于检测猫的正面脸部。
lbpcascade_frontalface.xml用于检测人脸的正面部分。
lbpcascade_frontalface_improved.xml用于检测人脸的正面部分,改进版本。
lbpcascade_profileface.xml用于检测人脸的侧面部分。
lbpcascade_silverware.xml用于检测银器(如刀、叉、勺等餐具)。

2 Kotlin OpenCV Haar 测试代码

package com.xu.com.xu.imageimport org.opencv.core.MatOfRect
import org.opencv.core.Point
import org.opencv.core.Scalar
import org.opencv.highgui.HighGui
import org.opencv.imgcodecs.Imgcodecs
import org.opencv.imgproc.Imgproc
import org.opencv.objdetect.CascadeClassifier
import java.io.File
import java.util.*object FaceDetect {init {val os = System.getProperty("os.name")val type = System.getProperty("sun.arch.data.model")if (os.uppercase(Locale.getDefault()).contains("WINDOWS")) {val lib = if (type.endsWith("64")) {File("lib\\opencv\\x64\\" + System.mapLibraryName("opencv_java4100"))} else {File("lib\\opencv\\x86\\" + System.mapLibraryName("opencv_java4100"))}System.load(lib.absolutePath)}}@JvmStaticfun main(args: Array<String>) {face()}private fun face() {val facebook = CascadeClassifier("lib/opencv/data/haarcascades/haarcascade_frontalface_alt2.xml")val image = Imgcodecs.imread("C:\\Users\\hyacinth\\Desktop\\1.png")val face = MatOfRect()facebook.detectMultiScale(image, face)val reacts = face.toArray()println("匹配到 " + reacts.size + " 个人脸")for (i in reacts.indices) {Imgproc.rectangle(image,Point(reacts[i].x.toDouble(), reacts[i].y.toDouble()),Point((reacts[i].x + reacts[i].width).toDouble(), (reacts[i].y + reacts[i].height).toDouble()),Scalar(0.0, 0.0, 255.0), 2)Imgproc.putText(image,i.toString(),Point(reacts[i].x.toDouble(), reacts[i].y.toDouble()),Imgproc.FONT_HERSHEY_SCRIPT_SIMPLEX,1.0,Scalar(0.0, 0.0, 255.0),2,Imgproc.LINE_AA,false)}HighGui.imshow("人脸识别", image)HighGui.waitKey(0)}}

在这里插入图片描述

http://www.lryc.cn/news/413800.html

相关文章:

  • 嗖嗖移动业务大厅(Java版)
  • hcia复习笔记
  • pycharm中安装、使用扩展工具,以QT Designer为例
  • 【Rust光年纪】Rust语言实用库汇总:从机器翻译到全文搜索引擎
  • 学习笔记 - 二极管的参数与选型
  • PMP--冲刺--易混概念
  • Resolving Maven dependencies
  • 【Spring】SSM框架整合Spring和SpringMVC
  • 优维2024年中思考:大模型赋予新一代运维的“非产品性”启示
  • 【中药网络药理学】筛选细胞衰老和预后相关基因(附分类代码和画图代码)
  • 华为的流程体系
  • 算法——长度最小的子数组209 对比代码随想录题解中对于result取值为Integer.MAX_VALUE的思考
  • 图像处理案例03
  • 【Kubernetes】k8s集群中kubectl的陈述式资源管理
  • 串---顺序串实现
  • 吴恩达机器学习WEEK2
  • yield and generator in python
  • spring原理(自学第六天)
  • 案例分享—国外优秀ui设计作品赏析
  • 【C++】简约与清晰的编程艺术
  • java之WIFI信号模块
  • Mybatis面试
  • Centos 8系统xfs文件系统类型进行扩容缩容 (LVM)
  • C语言基础知识之函数指针和指针函数
  • 【Unity】web gl inputFied 中文输入,同时支持TextMeshInputFied,支持全屏
  • vue3+vite全局引入less变量和函数
  • H81002S 1.7mm网络变压器:BMS汽车蓝牙接收器中的超薄共模电感科技
  • C语言.回调函数
  • 《从零开始:使用Python构建简单Web爬虫》
  • 最新个人免签约支付系统源码|PHP源码 | 码支付系统 | ThinkPHP6框架 | 开源