当前位置: 首页 > news >正文

【C++的剃刀】我不允许你还不会AVL树


db43723fcefb47a09b575a7812877e29.png


 学习编程就得循环渐进,扎实基础,勿在浮沙筑高台  

 循环渐进Forward-CSDN博客


Hello,这里是kiki,今天继续更新C++部分,我们继续来扩充我们的知识面,我希望能努力把抽象繁多的知识讲的生动又通俗易懂,今天要讲的是C++AVL树~


目录

 循环渐进Forward-CSDN博客

AVL树的概念

AVL树节点的定义

AVL树的插入

AVL树的旋转

AVL树的验证 

AVL树的删除(了解)

AVL树的性能


AVL树的概念

二叉搜索树虽可以缩短查找的效率,但 如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下
因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法: 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过 1( 需要对树中的结点进行调整 ),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是 AVL
左右子树高度之差 ( 简称平衡因子 ) 的绝对值不超过 1(-1/0/1)

bc35a9db963a447db98d2ec34110f2a3.png

如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个结点,其高度可保持在
eq?%24O%28log_2%20n%29%24 ,搜索时间复杂度 eq?%24O%28log_2%20n%29%24

AVL树节点的定义

template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;                  // 该节点的平衡因子
};

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子
bool Insert(const T& data)
{
while (pParent){// 更新双亲的平衡因子if (pCur == pParent->_pLeft)pParent->_bf--;elsepParent->_bf++;// 更新后检测双亲的平衡因子if (0 == pParent->_bf){    break;}else if (1 == pParent->_bf || -1 == pParent->_bf){// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
为根的二叉树// 的高度增加了一层,因此需要继续向上调整pCur = pParent;pParent = pCur->_pParent;}else{if(2 == pParent->_bf){// ...}else{// ...}}}return true;
}

AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
1. 新节点插入较高左子树的左侧 --- 左左:右单旋

244858438a414b5aae9534a411d816ce.png


2. 新节点插入较高右子树的右侧 --- 右右:左单旋

a3eede8e12d040768e6d8567cbe8bfbc.png


3. 新节点插入较高左子树的右侧 ---左右:先左单旋再右单旋        

296f4acc277645a1a2147ccd7fb6fb78.png


将双旋变成单旋后再旋转,即: 先对 30 进行左单旋,然后再对 90 进行右单旋,旋转完成后再
考虑平衡因子的更新。
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
行调整
void _RotateLR(PNode pParent)
{PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
点的平衡因子int bf = pSubLR->_bf;// 先对30进行左单旋_RotateL(pParent->_pLeft);// 再对90进行右单旋_RotateR(pParent);if(1 == bf)pSubL->_bf = -1;else if(-1 == bf)pParent->_bf = 1;
}
4. 新节点插入较高右子树的左侧 --- 右左:先右单旋再左单旋
4bb4ebc6225943e89a7979c7d795f111.png

参考右左双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑
1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
1、当pSubR的平衡因子为1时,执行左单旋
2、当pSubR的平衡因子为-1时,执行右左双旋
2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
1、当pSubL的平衡因子为-1是,执行右单旋
2、当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

AVL树的验证 

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1. 验证其为二叉搜索树
1、如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2. 验证其为平衡树
1、每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
2、节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{// 空树也是AVL树if (nullptr == pRoot) return true;// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差int leftHeight = _Height(pRoot->_pLeft);int rightHeight = _Height(pRoot->_pRight);int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者// pRoot平衡因子的绝对值超过1,则一定不是AVL树if (diff != pRoot->_bf || (diff > 1 || diff < -1))return false;// pRoot的左和右如果都是AVL树,则该树一定是AVL树return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);}

AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

 学习编程就得循环渐进,扎实基础,勿在浮沙筑高台


http://www.lryc.cn/news/409124.html

相关文章:

  • React搭建Vite项目及各种项目配置
  • Linux Vim教程:多文件编辑与窗口管理
  • C语言进阶 11.结构体
  • Vue--解决error:0308010C:digital envelope routines::unsupported
  • go-kratos 学习笔记(6) 数据库gorm使用
  • 记录:vite打包报错 error during build: Error: Parse error @:1:1
  • Python 消费Kafka手动提交 批量存入Elasticsearch
  • oracle 基础知识表的主键
  • opencascade AIS_MouseGesture AIS_MultipleConnectedInteractive源码学习
  • Unity Apple Vision Pro 开发:如何把 PolySpatial 和 Play To Device 的版本从 1.2.3 升级为 1.3.1
  • 大数据时代,区块链是如何助力数据开放共享的?
  • 睿抗2024省赛----RC-u4 章鱼图的判断
  • py2exe,一个神奇的 Python 库
  • 博途PLC网络连接不上
  • 哪个邮箱最安全最好用啊
  • 企业微信开发智能升级:AIGC技术赋能,打造高效沟通平台
  • Apache Doris + Paimon 快速搭建指南|Lakehouse 使用手册(二)
  • Inno setup pascal编码下如何美化安装界面支持带边框,圆角,透明阴影窗口
  • SQL语句(以MySQL为例)——单表、多表查询
  • C++第二十八弹---进一步理解模板:特化和分离编译
  • 正则表达式的独占模式,懒惰模式等有那些区别
  • 【INTEL(ALTERA)】Quartus® Prime Pro Edition 软件 v24.2 中,哪些 Agilex™ 5 IP 功能的硬件验证有限?
  • Lua编程
  • 2019数字经济公测大赛-VMware逃逸
  • 如何改桥接模式
  • 江科大/江协科技 STM32学习笔记P13
  • loadrunner录制解决提示安全问题
  • 为什么要读写分离?如何实现业务系统读写分离?
  • C#基础——类、构造函数和静态成员
  • hadoop学习(二)