当前位置: 首页 > news >正文

Elasticsearch:使用 Logstash 构建从 Kafka 到 Elasticsearch 的管道 - Nodejs

在我之前的文章 “Elastic:使用 Kafka 部署 Elastic Stack”,我构建了从 Beats => Kafka => Logstash => Elasticsearch 的管道。在今天的文章中,我将描述从 Nodejs => Kafka => Logstash => Elasticsearch 这样的一个数据流。在之前的文章 “Elastic:Data pipeline:使用 Kafka => Logstash => Elasticsearch” 中,我也展示了使用 Python 的方法。我的配置如下:

在上面的架构中,有几个重要的组件:

  • Kafka Server:这就是数据首先发布的地方。
  • Producer:扮演将数据发布到 Kafka topic 的角色。 在现实世界中,你可以具有任何可以为 kafka 主题生成数据的实体。 在我们的示例中,我们将生成伪造的用户注册数据。
  • Elasticsearch:这将充当将用户注册数据存储到其自身的数据库,并提供搜索及分析。
  • Logstash:Logstash 将扮演中间人的角色,在这里我们将从 Kafka topic 中读取数据,然后将其插入到 Elasticsearch 中。
  • Kibana:Kibana 将扮演图形用户界面的角色,它将以可读或图形格式显示数据。

为了演示的方便,你可以在地址下载演示文件 GitHub - liu-xiao-guo/data-pipeline8。我的文件目录是这样的:

$ pwd
/Users/liuxg/data/data-pipeline8
$ tree -L 3
.
├── README.md
├── docker-elk
│   ├── docker-compose.yml
│   └── logstash_pipeline
│       └── kafka-elastic.conf
├── docker-kafka
│   └── kafka-docker-compose.yml
└── kafka_producer.js
$ pwd
/Users/liuxg/data/data-pipeline8/docker-elk
$ ls -al
total 16
drwxr-xr-x  5 liuxg  staff   160 May 14  2021 .
drwxr-xr-x  8 liuxg  staff   256 Mar  5 07:36 ..
-rw-r--r--  1 liuxg  staff    29 May  7  2021 .env
-rw-r--r--  1 liuxg  staff  1064 May 13  2021 docker-compose.yml
drwxr-xr-x  3 liuxg  staff    96 May 13  2021 logstash_pipeline
$ vi .env
$ cat .env
ELASTIC_STACK_VERSION=8.6.2

上面的其它文件将在我下面的章节中介绍。如果你自己想通过手动的方式部署 Kafka 请参阅我的另外一篇文章 “使用 Kafka 部署 Elastic Stack”。

安装

Kafka,Zookeeper 及 Kafka Manager

我将使用 docker-compose 来进行安装。一旦安装好,我们可以看到:

  • Kafka 在 PORT 9092 侦听
  • Zookeeper 在 PORT 2181 侦听
  • Kafka Manager 侦听 PORT 9000 侦听

kafka-docker-compose.yml

version: "3"
services:zookeeper:image: zookeeperrestart: alwayscontainer_name: zookeeperhostname: zookeeperports:- 2181:2181environment:ZOO_MY_ID: 1kafka:image: wurstmeister/kafkacontainer_name: kafkaports:- 9092:9092environment:KAFKA_ADVERTISED_HOST_NAME: 192.168.0.3 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181kafka_manager:image: hlebalbau/kafka-manager:stablecontainer_name: kakfa-managerrestart: alwaysports:- "9000:9000"environment:ZK_HOSTS: "zookeeper:2181"APPLICATION_SECRET: "random-secret"command: -Dpidfile.path=/dev/null

我们可以使用如下的命令来进行启动(在 Docker 运行的前提下):

docker-compose -f kafka-docker-compose.yml up

 一旦运行起来后,我们可以使用如下的命令来进行查看:

docker ps
$ docker ps
CONTAINER ID   IMAGE                            COMMAND                  CREATED              STATUS              PORTS                                                  NAMES
a4acc0730467   zookeeper                        "/docker-entrypoint.…"   About a minute ago   Up About a minute   2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 8080/tcp   zookeeper
02ec8e8a1e30   hlebalbau/kafka-manager:stable   "/kafka-manager/bin/…"   About a minute ago   Up About a minute   0.0.0.0:9000->9000/tcp                                 kakfa-manager
a85c32c0c08e   wurstmeister/kafka               "start-kafka.sh"         About a minute ago   Up About a minute   0.0.0.0:9092->9092/tcp                                 kafka

我们发现 Kafka Manager 运行于 9000 端口。我们打开本地电脑的 9000 端口:

在上面它显示了一个默认的 topic,虽然不是我们想要的。

 

这样,我们就把 Kafka 上的 kafka_logstash topic 创建好了。

我们可以登录 kafka 容器来验证我们已经创建的 topic。我们使用如下的命令来找到 kafka 容器的名称:

docker ps -s
$ docker ps -s
CONTAINER ID   IMAGE                            COMMAND                  CREATED         STATUS         PORTS                                                  NAMES           SIZE
de7453250529   hlebalbau/kafka-manager:stable   "/kafka-manager/bin/…"   9 minutes ago   Up 9 minutes   0.0.0.0:9000->9000/tcp                                 kakfa-manager   117kB (virtual 427MB)
65eba68350f1   zookeeper                        "/docker-entrypoint.…"   9 minutes ago   Up 9 minutes   2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 8080/tcp   zookeeper       33kB (virtual 288MB)
3394868b23e9   wurstmeister/kafka               "start-kafka.sh"         9 minutes ago   Up 9 minutes   0.0.0.0:9092->9092/tcp                                 kafka           210kB (virtual 457MB)

上面显示 kafka 的容器名称为 wurstmeister/kafka。我们使用如下的命令来进行登录:

docker exec -it wurstmeister/kafka  /bin/bash

然后我们在容器里 打入如下的命令:

$ docker exec -it kafka  /bin/bash
root@3394868b23e9:/# kafka-topics.sh --list -zookeeper zookeeper:2181
__consumer_offsets
kafka_logstash

上面的命令显示已经存在的被创建的 kafka_logstash topic。我们可以使用如下的命令来向这个被创建的 topic 来发送数据:

kafka-console-consumer.sh --bootstrap-server 192.168.0.3:9092 --topic kafka_logstash --from-beginning
root@3394868b23e9:/# kafka-console-consumer.sh --bootstrap-server 192.168.0.3:9092 --topic kafka_logstash --from-beginning

Elastic Stack 安装

 我们接下来安装 Elastic Stack。同样地,我使用 docker-compose 来部署 Elasticsearch, Logstash 及 Kibana。你们可以参考我之前的文章 “Logstash:在 Docker 中部署 Logstash”。为了能够把数据传入到 Elasticsearch 中,我们需要在 Logstash 中配置一个叫做 kafka-elastic.conf 的配置文件:

kafka-elastic.conf

input {kafka {bootstrap_servers => "192.168.0.3:9092"topics => ["kafka_logstash"]}
}output {elasticsearch {hosts => ["elasticsearch:9200"]index => "kafka_logstash"workers => 1}
}

请注意:在上面的 192.168.0.3 为我自己电脑的本地 IP 地址。为了说明问题的方便,我们没有对来自 kafka 里的 registered_user 这个 topic 做任何的数据处理,而直接发送到 Elasticsearch 中。

我们的 docker-compose.yml 配置文件如下:

docker-compose.yml

version: "3.9"
services:elasticsearch:image: elasticsearch:${ELASTIC_STACK_VERSION}container_name: elasticsearchenvironment:- discovery.type=single-node- ES_JAVA_OPTS=-Xms1g -Xmx1g- xpack.security.enabled=falsevolumes:- type: volumesource: es_datatarget: /usr/share/elasticsearch/dataports:- target: 9200published: 9200networks:- elastickibana:image: kibana:${ELASTIC_STACK_VERSION}container_name: kibanaports:- target: 5601published: 5601depends_on:- elasticsearchnetworks:- elastic   logstash:image: logstash:${ELASTIC_STACK_VERSION}container_name: logstashports:- 5200:5200volumes: - type: bindsource: ./logstash_pipeline/target: /usr/share/logstash/pipelineread_only: truenetworks:- elastic           volumes:es_data:driver: localnetworks:elastic:name: elasticdriver: bridge

为方便起见,在我的安装中,我没有配置安全。如果你需要为 Elasticsearch 设置安全的话,请参考我之前的文章 “Elasticsearch:使用 Docker compose 来一键部署 Elastic Stack 8.x”。

我们使用如下的命令来启动 Elastic Stack。在 docker-compose.yml 所在的目录中打入如下的命令:

$ pwd
/Users/liuxg/data/data-pipeline8/docker-elk
$ ls
docker-compose.yml logstash_pipeline
$ docker-compose up

 等所有的 Elastic Stack 运行起来后,我们再次通过如下的命令来进行查看:

docker ps
$ docker ps
CONTAINER ID   IMAGE                            COMMAND                  CREATED              STATUS              PORTS                                                  NAMES
3db5e4e6e23e   kibana:8.6.2                     "/bin/tini -- /usr/l…"   About a minute ago   Up About a minute   0.0.0.0:5601->5601/tcp                                 kibana
210b673dd89a   logstash:8.6.2                   "/usr/local/bin/dock…"   About a minute ago   Up About a minute   5044/tcp, 9600/tcp, 0.0.0.0:5200->5200/tcp             logstash
05c434edd823   elasticsearch:8.6.2              "/bin/tini -- /usr/l…"   About a minute ago   Up About a minute   0.0.0.0:9200->9200/tcp, 9300/tcp                       elasticsearch
de7453250529   hlebalbau/kafka-manager:stable   "/kafka-manager/bin/…"   51 minutes ago       Up 51 minutes       0.0.0.0:9000->9000/tcp                                 kakfa-manager
65eba68350f1   zookeeper                        "/docker-entrypoint.…"   51 minutes ago       Up 51 minutes       2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 8080/tcp   zookeeper
3394868b23e9   wurstmeister/kafka               "start-kafka.sh"         51 minutes ago       Up 51 minutes       0.0.0.0:9092->9092/tcp                                 kafka

我们可以看到 Elasticsearch 运用于 9000 端口,Kibana 运行于 5601 端口,而 Logstash 运行 5000 端口。 我们可以访问 Kibana 的端口地址 5601: 

 

运行 Nodejs 应用导入模拟数据

我们接下来建立一个 Nodejs 的应用来模拟一些数据。首先,我们需要安装如下的包:

npm install kafkajs uuid randomstring random-mobile

我们在根目录下打入如下的命令:

npm init -y
$ npm init -y
Wrote to /Users/liuxg/data/data-pipeline8/package.json:{"dependencies": {"kafkajs": "^2.2.4"},"name": "data-pipeline8","description": "This is a sample code showing how to realize the following data pipeline:","version": "1.0.0","main": "kafka_producer.js","devDependencies": {},"scripts": {"test": "echo \"Error: no test specified\" && exit 1"},"repository": {"type": "git","url": "git+https://github.com/liu-xiao-guo/data-pipeline8.git"},"keywords": [],"author": "","license": "ISC","bugs": {"url": "https://github.com/liu-xiao-guo/data-pipeline8/issues"},"homepage": "https://github.com/liu-xiao-guo/data-pipeline8#readme"
}

上述命令生成一个叫做 package.json 的文件。在以后安装的 packages,它也会自动添加到这个文件中。默认的设置显然不是我们想要的。我们需要对它做一些修改。

kafka_producer.js

// import { Kafka, logLevel } from "kafkajs";
const { Kafka } = require('kafkajs');
const logLevel = require("kafkajs");// import { v4 as uuidv4 } from "uuid";
const { v4: uuidv4 } = require('uuid');console.log(uuidv4());const kafka = new Kafka({clientId: "random-producer",brokers: ["localhost:9092"],connectionTimeout: 3000,
});var randomstring = require("randomstring");
var randomMobile = require("random-mobile");
const producer = kafka.producer({});
const topic = "kafka_logstash";const produce = async () => {await producer.connect();let i = 0;setInterval(async () => {var event = {};try {event = {globalId: uuidv4(),event: "USER-CREATED",data: {id: uuidv4(),firstName: randomstring.generate(8),lastName: randomstring.generate(6),country: "China",email: randomstring.generate(10) + "@gmail.com",phoneNumber: randomMobile(),city: "Hyderabad",createdAt: new Date(),},};await producer.send({topic,acks: 1,messages: [{value: JSON.stringify(event),},],});// if the message is written successfully, log it and increment `i`console.log("writes: ", event);i++;} catch (err) {console.error("could not write message " + err);}}, 5000);
};produce().catch(console.log)

我们运行上面的 Nodejs 代码:

npm start

 我们接下来在 Kibana 中来查看索引 kafka_logstash:

GET kafka_logstash/_count
{"count": 103,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0}
}

我们可以看到文档的数值在不断地增加。我们可以查看文档:

很显然我们收到了数据。从上面的结果中,我们可以看出来是一些非结构化的数据。我们可以针对 Logstash 的 pipeline 进行修改:

kafka-elastic.conf

input {kafka {bootstrap_servers => "192.168.0.3:9092"topics => ["kafka_logstash"]}
}filter {json {source => "message"}mutate {add_field => {"id" => "%{[data][id]}"}add_field => {"firstName" => "%{[data][firstName]}"}add_field => {"lastName" => "%{[data][lastName]}"}add_field => {"city" => "%{[data][city]}"}add_field => {"country" => "%{[data][country]}"}add_field => {"email" => "%{[data][email]}"}add_field => {"phoneNumber" => "%{[data][phoneNumber]}"}add_field => {"createdAt" => "%{[data][createdAt]}"}remove_field => ["data", "@version", "@timestamp", "message", "event", "globalId"]}  
}output {elasticsearch {hosts => ["elasticsearch:9200"]index => "kafka_logstash"workers => 1}
}

我们在 Kibana 中删除 kafka_logstash:

DELETE kafka_logstash

我们停止运行 Nodejs 应用。我们把运行 Elastic Stack 的 docker-compose 关掉,并再次重新启动它:

docker-compose down
docker-compose up

我们再次运行 Nodejs 应用:

 我们再次到 Kibana 中进行查看:

很显然,这次,我们看到结构化的输出文件。

http://www.lryc.cn/news/31552.html

相关文章:

  • 记录一次es的性能调优
  • 内核性能评估测试及具体修改操作步骤记录
  • S7-200smart远程无线模拟量信号采集案例
  • Blender Python材质处理入门
  • ChatGPT后劲很大,问题也是
  • 世界那么大,你哪都别去了,来我带你了解CSS3 (二)
  • 2023年再不会Redis,就要被淘汰了
  • Java SPI机制了解与应用
  • vue实现输入框中输完后光标自动跳到下一个输入框中
  • 如何构建 C 语言编译环境?
  • 电子台账:模板制作之一——列过滤(水平过滤)
  • 【java】Java连接mysql数据库及mysql驱动jar包下载和使用
  • Mysql八股文
  • 解析Android ANR问题
  • ESP32设备驱动-MicroSD Card驱动
  • XC7K160T-1FBG484I、XC7A100T-2CSG324I FPGA可编程门阵列 PDF规格书
  • 基于HD-RK3568-IO评估板的读写速度测试报告
  • jconsole远程linux下的tomcat
  • Redis和MySQL如何保持数据一致性?
  • 频谱分析仪的工作原理
  • docker项目自动化部署脚本(认真排版、工作积累)
  • 【经验分享】使用了6年的实时操作系统,是时候梳理一下它的知识点了 | 文末赠书4本
  • 蓝桥杯C/C++程序设计 往届真题汇总(进阶篇)
  • yocto 将kernel添加到rootfs
  • 高通 Android10/12 4 6dof Camera+2RGBCamera异常处理经验总结
  • 项目实战典型案例17——环境混用来带的影响
  • Linux【进程理解】
  • 【华为OD机试2023】数组的中心位置 C++ Java Python
  • “大数据时代下的地理信息可视化:ECharts地图和数据面板实践“
  • MySQL数据库基础