当前位置: 首页 > news >正文

【深度学习】gan网络原理实现猫狗分类

【深度学习】gan网络原理实现猫狗分类

GAN的基本思想源自博弈论你的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式训练,目的是估测数据样本的潜在分布并生成新的数据样本。
在这里插入图片描述

1.下载数据并对数据进行规范

transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.5 , 0.5)
])
train_ds = torchvision.datasets.MNIST('data', train=True, transform=transform, download=True)
dataloader = torch.utils.data.DataLoader(train_ds, batch_size=64, shuffle=True)

下载MNIST数据集,并对数据进行规范化。transforms.Compose 是用于定义一系列数据变换的类,ToTensor() 将图像转换为PyTorch张量,Normalize(0.5, 0.5) 对张量进行归一化。然后,创建一个 DataLoader,它将数据集划分成小批次,使得在训练时更容易处理。

2.生成器的代码

class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.main = nn.Sequential(nn.Linear(100, 256),nn.ReLU(),nn.Linear(256, 512),nn.ReLU(),nn.Linear(512, 28*28),nn.Tanh())def forward(self, x):img = self.main(x)img = img.reshape(-1, 28, 28)return img

这一部分定义了生成器的神经网络模型。生成器的输入是一个大小为100的随机向量,通过多个线性层和激活函数(ReLU),最后通过 nn.Tanh() 激活函数生成大小为28x28的图像。forward 方法定义了前向传播的过程。

3.判别器的代码

class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.main = nn.Sequential(nn.Linear(28*28, 512),nn.LeakyReLU(),nn.Linear(512, 256),nn.LeakyReLU(),nn.Linear(256, 1),nn.Sigmoid())def forward(self, x):x = x.view(-1, 28*28)x = self.main(x)return x

这一部分定义了判别器的神经网络模型。判别器的输入是28x28大小的图像,通过多个线性层和激活函数(LeakyReLU),最后通过 nn.Sigmoid() 激活函数输出一个0到1之间的值,表示输入图像是真实图像的概率。

4. 定义损失函数和优化函数

device = 'cuda' if torch.cuda.is_available() else 'cpu'
gen = Generator().to(device)
dis = Discriminator().to(device)
gen_opt = optim.Adam(gen.parameters(), lr=0.0001)
dis_opt = optim.Adam(dis.parameters(), lr=0.0001)
loss_fn = torch.nn.BCELoss()

这一部分设置了设备(GPU或CPU)、初始化了生成器和判别器的实例,并定义了优化器(Adam优化器)和损失函数(二分类交叉熵损失)。将生成器和判别器移动到设备上进行加速计算。

5.定义绘图函数

def gen_img_plot(model,test_input):prediction = np.squeeze(model(test_input).detach().cpu().numpy())fig = plt.figure(figsize=(4, 4))for i in range(16):plt.subplot(4, 4, i+1)plt.imshow((prediction[i]+1)/2)plt.axis('off')plt.show()

6. 开始训练,并显示出生成器所产生的图像

test_input = torch.randn(16, 100, device=device)
D_loss = []
G_loss = []
for epoch in range(30):d_epoch_loss = 0g_epoch_loss = 0count = len(dataloader)for step, (img, _) in enumerate(dataloader):img = img.to(device)               # 获得用于训练的mnist图像size = img.size(0)                 # 获得1批次数据量大小# 随机生成size个100维的向量样本值,也即是噪声,用于输入生成器 生成 和mnist一样的图像数据random_noise = torch.randn(size, 100, device=device)########################### 先训练判别器 #############################dis_opt.zero_grad()real_output = dis(img)d_real_loss = loss_fn(real_output, torch.ones_like(real_output))  # 真实值的loss,也即是真图片与1标签的损失d_real_loss.backward()gen_img = gen(random_noise)fake_output = dis(gen_img.detach())d_fake_loss = loss_fn(fake_output, torch.zeros_like(fake_output)) # 假的值的loss,也即是生成的图像与0标签的损失d_fake_loss.backward()d_loss = d_real_loss + d_fake_lossdis_opt.step()########################### 下面再训练生成器 #############################gen_opt.zero_grad()fake_output = dis(gen_img)g_loss = loss_fn(fake_output, torch.ones_like(fake_output))g_loss.backward()gen_opt.step()#########################################################################with torch.no_grad():d_epoch_loss += d_lossg_epoch_loss += g_loss
with torch.no_grad():d_epoch_loss /= countg_epoch_loss /= countD_loss.append(d_epoch_loss)G_loss.append(g_epoch_loss)print('epoch:', epoch)gen_img_plot(gen, test_input)

1.设置 test_input 作为模型的输入,并初始化用于存储判别器(D)和生成器(G)的损失值的列表。

2.开始 30 轮次的训练循环。在每一轮中:

3.对数据集进行遍历。每次迭代,加载一批图像数据 (img)。

4.将图像数据移动到设备(device)上,并获取批次大小。

5.生成随机噪声,作为输入给生成器。

6.训练判别器(D):

  • 对真实图像计算判别器的损失 (d_real_loss),并反向传播计算梯度。
  • 生成生成器产生的图像,并计算判别器的对这些生成图像的损失 (d_fake_loss),再反向传播计算梯度。
  • 计算总的判别器损失 d_loss,并更新判别器的参数。

7.训练生成器(G):

  • 生成器生成图像,并将其输入到判别器中,计算生成器的损失 (g_loss),并反向传播计算梯度。
  • 更新生成器的参数。

这个过程是 GAN 中交替训练生成器和判别器的典型过程,目的是让生成器生成逼真的图像,同时让判别器能够准确区分真假图像。

http://www.lryc.cn/news/245962.html

相关文章:

  • ⑨【Stream】Redis流是什么?怎么用?: Stream [使用手册]
  • 浙江启用无人机巡山护林模式,火灾扑救效率高
  • Starrocks异步物化视图的使用以及注意事项
  • SpringBoot整合Sharding-Jdbc实现分库分表和分布式全局id
  • 「江鸟中原」有关HarmonyOS-ArkTS的Http通信请求
  • vuex的使用笔记
  • 汇编:关于栈的知识
  • uniapp使用map标签
  • MacOS14 Sonoma 安装 Flutter 开发环境
  • 【Web】PHP反序列化刷题记录
  • C++标准模板库 STL 简介(standard template library)
  • Linux篇:文件系统
  • AI - Crowd Simulation(集群模拟)
  • <JavaEE> Java中线程有多少种状态(State)?状态之间的关系有什么关系?
  • 正则表达式 通配符 awk文本处理工具
  • 三、ts高级笔记,
  • 二十一、数组(6)
  • flask依据现有的库表快速生成flask实体类
  • .NET6 开发一个检查某些状态持续多长时间的类
  • 链表K个节点的组内逆序调整问题
  • 安卓隐私指示器学习笔记
  • 【Jenkins】jenkins发送邮件报错:Not sent to the following valid addresses:
  • CSS3制作3D爱心动画
  • Python Opencv实践 - 全景图片拼接stitcher
  • echarts 几千条分钟级别在小时级别图标上展示
  • 操作系统的中断与异常(408常考点)
  • linux下的工具---vim
  • 代码随想录算法训练营第六十天|84. 柱状图中最大的矩形
  • P14 C++局部静态变量static延长生命周期
  • C语言:写一个函数,求字符串的长度,在main函数中输入字符串并输出其长度(指针)