当前位置: 首页 > news >正文

【BN层的作用】论文阅读 | How Does Batch Normalization Help Optimization?

前言:15年Google提出Batch Normalization,成为深度学习最成功的设计之一,18年MIT团队将原论文中提出的BN层的作用进行了一一反驳,重新揭示BN层的意义
2015年Google团队论文:【here】
2018年MIT团队论文:【here】

How Does Batch Normalization Help Optimization?

原文观点

15年那篇论文里提出BN对网络起的作用是,减少了中间协变量偏移的影响 Internal Covariate Shift(ICS)。神经网络每一层在更新了权重之后的输出的分布是变化的,因此中间协变量也会有变化,通过将线性映射之后的输出“白化”,即控制均值为0,和方差恒为1,可以有效的将每一层网络学习的输入控制在一个相同的分布下,因此更有利于网络的学习。

反驳论点

这篇论文首先对原文引出的概念提出了两点质疑

第一,BN层的成功真的在于减少了中间协变量偏移吗?

Does BatchNorm’s performance stem from controlling internal covariate shift?

作者这里为了证明BN层的成功不在于减少了ICS,设计了三组参照实验,第一组不加BN,第二组加BN,第三组加了BN层之后又加上一个随机白噪声,有着不同的均值和方差,作者旨在通过第三组实验,模拟加了BN层但是ICS更高的场景

这三组实验在VGG的网络上的表现如下
在这里插入图片描述
可以看到,加了BN层但是ICS更高的第三组实验比,标准实验(不加BN)取得更好的训练效果,中间变量均值偏移和方差偏移的可视化如下,可以看到:“噪声”网络比标准网络的ICS更高
在这里插入图片描述
因此,这组实验可以证明,BN层可以帮助网络的训练,但并不在于ICS的减少,即不在于每一层的分布保持一致

作者紧接着提出了第二个质疑,即BN层的添加是否有减少ICS呢?即有没有一个更广泛的中间协变量偏移的概念(而不是均值方差的偏移),来证明与BN层网络的关系

第二,BatchNorm真的能减少ICS吗

Is BatchNorm reducing internal covariate shift?

本文作者认为,参数更新会导致这个损失函数最小化问题本身改变,这和原论文的作者直觉一致,但原论文作者从结果的分布来捕捉这样的现象,这没有触及到问题的本质。如果要挖掘这样的优化问题的本质,应该从优化参数的梯度去入手,因此提出了一种新的方式定义ICS,即用更新前和更新后的每一层参数的梯度的二范数来表示偏移。因此,梯度变化可以代表在每一次参数更新后,在这一层的损失图上的一个跨越
在这里插入图片描述
大概类似于这样的损失图上,如果ICS很大,在每一层的optimize landsacpe上的位置跨越就很大,导致梯度的变化很大
在这里插入图片描述
而结果也是令人震惊,加了BN层的ICS反而更大了,如下图右边
在学习率很大的时候,梯度的变化都是震荡得比较剧烈的,在学习率比较小的时候,不加BN的标准网络的梯度变化非常小(体现在接近1的余弦角度和很小的l2距离)
在这里插入图片描述
(这里我的理解是,由于不加BN的优化landscape不够光滑,如果梯度变化过大会导致掉到局部最优或者是进入平坦区域)BN使优化landscape变光滑了,每一次调整的梯度变大,因此也很快收敛

BN为什么工作

作者给出直接的观点,加了BN重新调整了网络的训练参数,使优化的landscape变得光滑
在这里插入图片描述
由于没法进行全局的landscape的可视化,作者通过几个参数来代表优化landscape的光滑程度
损失函数的变化
梯度的变化
β平滑度
在这里插入图片描述

在这里插入图片描述
在VGG和DNN中加了BN都有改善

同时,作者还发现,BN不是唯一可以进行平滑optimization landscape的方式,再进行了不同正则化之后,网络的损失和梯度也能实现平滑
在这里插入图片描述
在这里插入图片描述

理论分析

作者还给出了BN为什么能实现平滑optimization landsacpe的公式推导
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

很早期的标杆性论文,对理解BN层的作用很有帮助

http://www.lryc.cn/news/22909.html

相关文章:

  • re.sub()用法的详细介绍
  • 【Python数据挖掘入门】2.2文本分析-中文分词(jieba库cut方法/自定义词典load_userdict/语料库分词)
  • Meta利用视觉信息来优化3D音频模型,未来将用于AR/VR
  • openlayers加载离线地图并实现深色地图
  • socket,tcp,http三者之间的区别和原理
  • 红日(vulnstack)1 内网渗透ATTCK实战
  • ik 分词器怎么调用缓存的词库
  • ROS1/2机器人操作系统与时间Time的不解之缘
  • 华为OD机试真题2022(JAVA)
  • 【3】MyBatis+Spring+SpringMVC+SSM整合一套通关
  • 20道前端高频面试题(附答案)
  • android EditText设置后缀
  • prometheus+cadvisor监控docker
  • 正演(1): 二维声波正演模拟程序(中心差分)Python实现
  • 珠海数据智能监控器+SaaS平台 轻松实现SMT生产管控
  • 习题22对前面21节的归纳总结
  • 使用Vite快速构建前端React项目
  • 人工智能高等数学--人工智能需要的数学知识_微积分_线性代数_概率论_最优化---人工智能工作笔记0024
  • 阿里大数据之路总结
  • ABAP中Literals的用法(untyped literal vs. typed literal)
  • tensorflow1.14.0安装教程
  • C++赋值运算符重载
  • 网络性能总不好?专家帮你来“看看”— CANN 6.0 黑科技 | 网络调优专家AOE,性能效率双提升
  • Qss自定义属性
  • 连接金蝶云星空,数据交互轻松搞定!丨三叠云
  • JSX是什么,React为什么使用JSX,babel怎么转译JSX的
  • 从工地转行软件测试,拿下13k+年终奖是种什么体验?
  • 前端面试题 —— 计算机网络(二)
  • 山东大学机器学习期末2022
  • FEBC2022|打造VR内容生态闭环 佳创视讯持续加码轻量化内容建设