当前位置: 首页 > news >正文

【数据结构】二叉树的链式结构及实现

目录

1. 前置说明

2. 二叉树的遍历

2.1 前序、中序以及后序遍历

2.2 层序遍历

3. 节点个数及高度等

4. 二叉树的创建和销毁


1. 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType _data;struct BinaryTreeNode* _left;struct BinaryTreeNode* _right;
}BTNode;BTNode* CreatBinaryTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);node1->_left = node2;node1->_right = node4;node2->_left = node3;node4->_left = node5;node4->_right = node6;return node1;
}

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。

再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是

  1. 空树
  2. 非空:根节点,根节点的左子树、根节点的右子树组成的

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

2. 二叉树的遍历

2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

// 二叉树前序遍历
void PrevOrder(BTNode* root);
// 二叉树中序遍历
void InOrder(BTNode* root);
// 二叉树后序遍历
void PostOrder(BTNode* root);
void PrevOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%d ", root->val);PrevOrder(root->left);PrevOrder(root->right);
}void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->val);InOrder(root->right);
}void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);
}

下面主要分析前序递归遍历,中序与后序图解类似,大家可自己动手绘制。

前序遍历递归图解:

前序遍历结果:1 2 3 4 5 6

中序遍历结果:3 2 1 5 4 6

后序遍历结果:3 2 5 6 4 1

2.2 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

// 层序遍历
void LevelOrder(BTNode* root);
void LevelOrder(BTNode* root)
{Que q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);printf("%d ", front->val);if (front->left)QueuePush(&q, front->left);if (front->right)QueuePush(&q, front->right);QueuePop(&q);}printf("\n");QueueDestroy(&q);
}

3. 节点个数及高度等

// 二叉树节点个数
int TreeSize(BTNode* root);
// 二叉树叶子节点个数
int TreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int TreeKLevel(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* TreeFind(BTNode* root, int x);
// 二叉树的高度
int TreeHeight(BTNode* root);
int TreeSize(BTNode* root)
{return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}int TreeLeafSize(BTNode* root)
{if (root == NULL)return 0;if (root->left == NULL && root->right == NULL)return 1;return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}int TreeKLevel(BTNode* root, int k)
{assert(k > 0);if (root == NULL)return 0;if (k == 1)return 1;return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}BTNode* TreeFind(BTNode* root, int x)
{if (root == NULL)return NULL;if (root->val == x)return root;BTNode* ret = NULL;ret = TreeFind(root->left, x);if (ret)return ret;ret = TreeFind(root->right, x);if (ret)return ret;return NULL;
}int TreeHeight(BTNode* root)
{if (root == NULL)return 0;return fmax(TreeHeight(root->left), TreeHeight(root->right)) + 1;
}

4. 二叉树的创建和销毁

// 手动构建二叉树
BTNode* BuyNode(int x);
// 二叉树销毁
void TreeDestroy(BTNode* root);
// 判断二叉树是否是完全二叉树
int TreeComplete(BTNode* root);
BTNode* BuyNode(int x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc fail");exit(-1);}node->val = x;node->left = NULL;node->right = NULL;return node;
}void TreeDestroy(BTNode* root)
{if (root == NULL)return;TreeDestroy(root->left);TreeDestroy(root->right);free(root);
}int TreeComplete(BTNode* root)
{Que q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);if (front == NULL)break;QueuePush(&q, front->left);QueuePush(&q, front->right);QueuePop(&q);}// 已经遇到空节点,如果队列中后面的节点还有非空,就不是完全二叉树while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front != NULL){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}

本文完

http://www.lryc.cn/news/190638.html

相关文章:

  • OpenCV4(C++)—— 创建窗口滑动条来调参
  • 深度学习基础知识 学习率调度器的用法解析
  • 【JUC系列-12】深入理解PriorityQueue的底层原理和基本使用
  • Paddle安装
  • 配置XP虚拟机和Win 10宿主机互相ping通
  • 【机器学习】sklearn对数据预处理
  • 【智慧燃气】智慧燃气解决方案总体概述--终端层、网络层
  • Tomcat隔离web原理和热加载热部署
  • 使用ffmpeg和python脚本下载网络视频m3u8(全网最全面)
  • 【考研408常用数据结构】C/C++实现代码汇总
  • Flink学习笔记(二):Flink内存模型
  • 信息系统项目管理师第四版学习笔记——项目绩效域
  • PyTorch 深度学习之加载数据集Dataset and DataLoader(七)
  • 小谈设计模式(26)—中介者模式
  • 7种设计模式
  • el-table合计行合并
  • 新手如何快速上手HTTP爬虫IP?
  • (十五)VBA常用基础知识:正则表达式的使用
  • vue配置@路径
  • Ubuntu 18.04 OpenCV3.4.5 + OpenCV3.4.5 Contrib 编译
  • 【网络基础】IP 子网划分(VLSM)
  • 【OCR】合同上批量贴印章
  • Stable diffusion 用DeOldify给黑白照片、视频上色
  • 在服务器上解压.7z文件
  • 【opencv】windows10下opencv4.8.0-cuda C++版本源码编译教程
  • 软碟通制作启动盘
  • Tomcat和HPPT协议
  • Acwing.4736步行者(模拟)
  • 前端预览、下载二进制文件流(png、pdf)
  • 搞定ESD(三):ESD干扰耦合路径深入分析(一)