当前位置: 首页 > news >正文

线性代数的学习和整理13: 定义域,值域,到达域 和单射,满射,双射,反函数,逆矩阵

目录

1 函数与 向量/矩阵

2 初等数学的函数

2.1 函数

2.2 函数的定义:定义域  →映射→  值域

3  高等数学里的函数:定义域和陪域/到达域(非值域)的映射关系

3.1 函数

3.2 单射,满射,双射等都是针对定义域 和 陪域的

3.3 易错地方:值域较小且是被决定的

3.4 单射,满射,双射

4 函数和反函数 → 矩阵和逆矩阵

4.1 函数和反函数

4.2 矩阵和逆矩阵 (待完善)


1 函数与 向量/矩阵

下面两者形式类似,本质也类似

  • 函数的:  ax=y    ,常规函数里,a,x,y 一般都是单个数
  • 矩阵:     AX=Y  , 矩阵乘法,这里 A,x,y 一般都是向量/矩阵
  • 线性代数,就是处理 数组和矩阵(数组的数组)的学科

2 初等数学的函数

2.1 函数

形如  ax=y=f(x)的就是函数

  • 自变量 input:x ,原像
  • 因变量 output:y=f(x) ,像
  • 函数/变化规则/映射法则 function :f
  • 定义域domain: 自变量x的取值范围就是定义域,集合x
  • 值域 range:      因变量f(x)=y 的取值范围就是值域, 所有x的像的集合?

2.2 函数的定义:定义域  →映射→  值域

从映射的角度来看,定义域,值域

  • 函数定义域里的每个值x,必须有且只有一个值y与之对应
  1. 每个x不能是0个y对应
  2. 每个x都必须对应1个y
  3. 每个x不能对应多个y
  • 函数值域里的每个值y,必须有一个定义域的x与之对应
  1. 每个y都有1个x对应
  2. 有的y可能都多个x对应到它

如果从图形上来说

  • 函数f(x) 是从定义域 → 值域
  • 下面定义域里打叉×的点都是错的
  • 下面值域里打叉×的点都是错的

3  高等数学里的函数:定义域和陪域/到达域(非值域)的映射关系

3.1 函数

形如  ax=y=f(x)的就是函数

  • 自变量 input:x ,原像
  • 因变量 output:y=f(x) ,像
  • 函数/变化规则/映射法则 function :f
  • 定义域domain: 自变量x的取值范围就是定义域,集合x
  • 值域 range:      因变量f(x)=y 的取值范围就是值域, 所有x的像的集合?
  • 陪域/ 到达域codomain :因变量f(x)=y 可能的范围,集合y

3.2 单射,满射,双射等都是针对定义域 和 陪域的

  • 理清概念
  • 这个只针对 定义域 →  陪域/到达域
  • 不针对       定义域 →  值域
  • 就这么简单粗暴
  • 前面的函数的映射定义,可能算初等数学的把
  • 这个加入了 陪域/到达域的映射定义,可能算高等函数的把

3.3 易错地方:值域较小且是被决定的

  • 定义域,值域取值范围都选 R 或者 R+
  • 而值域,一般不存在选范围的问题,因为是同感 y=f(x) 一一映射决定的,一般肯定都是R的一个较小的子集!!

比如提前一个例题

  • 为什么y=x^2 不是满射,因为都是针对 定义域 R→  陪域/到达域R,而值域是R+,因此不是满射

3.4 单射,满射,双射

  • 非函数:  定义域里有的x对应了多个y,这种情况还是非函数
  • 单射:     定义域里的每个x 都有唯一的y对应。(但是有的y可能没有x对应)
  • 非单射: 定义域里的每个x 都有y对应,但是可能对应相同的y
  • 满射:     到达域里(非值域)的每个y 都有x对应 (但是有的y可能对应的2个x)
  • 非满射: 到达域里(非值域)不是每个y 都有x对应,有些y值没有x映射
  • 特例
  • 双射:    定义域中的x 和值域中y 分别一一对应
  • 双射的意义,只有满秩的双射矩阵,一定可逆矩阵(见下面)
  1. 单射非满射:   普通单射,只单射,不满射
  2. 单射&满射:    双射
  3. 非单射&满射:
  4. 非单射&非满射:

4 函数和反函数 → 矩阵和逆矩阵

双射的意义,只有满秩的双射矩阵,一定可逆矩阵(见下面)

  • 普通函数,直接让y 映射到x,很可能就不是函数
  • 下面图可以看到,直接让y 映射到x,很可能1个y会映射多个x,这样就不是函数

4.1 函数和反函数

如果一个函数 y=f(x)=ax 反过来 x=f(y)

  • 如果x和y调换,如果不是满射,反过来就不是单射,函数就不存在反函数
  • 所以 函数必须是 双射,这个函数才会有反函数。
  • 双射的函数,一定有反函数,见下图

4.2 矩阵和逆矩阵 (待完善)

  • 同理,矩阵必须是满秩的,才会有逆矩阵
  • 详细的需要写

http://www.lryc.cn/news/147444.html

相关文章:

  • 深入MaxCompute -第十一弹 -QUALIFY
  • Mysql定时备份事件
  • 探索ClickHouse——安装和测试
  • 常用的css样式
  • 小兔鲜儿 - 微信登录
  • C++ Primer阅读笔记--对象移动(右值引用、移动迭代器和引用限定符的使用)
  • 【办公类-16-01-02】2023年度上学期“机动班下午代班的排班表——跳过周三、节日和周末”(python 排班表系列)
  • ChatGPT HTML JS Echarts实现热力图展示
  • JavaScript七小知
  • Ubuntu【系统环境下】【编译安装OpenCV】【C++调用系统opencv库】
  • AR界安卓在中国,Rokid引爆空间计算狂潮
  • 在 React 中如何使用定时器
  • Unity记录4.6-存储-第四阶段总结
  • 【Python】从入门到上头— 使用包、模块、安装第三方模块(7)
  • flutter和原生利用pigeon建立通道
  • TCP连接分析:探寻TCP的三次握手
  • gitHooks使用教程
  • 2023.8 - java - 数组
  • ChatGPT怎么辅助解决社会问题?
  • Rust之自动化测试(一):如何编写测试
  • 简单聊聊Https的来龙去脉
  • 【注册岩土】Python土力学与基础工程计算.PDF-土中的应力
  • 祝贺!Databend Cloud 和阿里云 PolarDB 达成认证
  • SQL语言-01
  • PyCharm软件安装包分享(附安装教程)
  • AI文本标注的概念,类型和方法
  • 【AutoLayout案例04-游戏图片-按钮适配 Objective-C语言】
  • Spring Boot业务系统如何实现海量数据高效实时搜索
  • 面向对象的设计原则
  • 前端需要理解的工程化知识