当前位置: 首页 > news >正文

一、数学建模之线性规划篇

1.定义
2.例题
3.使用软件及解题

一、定义

1.线性规划(Linear Programming,简称LP)是一种数学优化技术,线性规划作为运筹学的一个重要分支,专门研究在给定一组线性约束条件下,如何找到一个最优的决策,使得目标函数取得最大或最小值。线性规划属于运筹学(Operations Research)这一学科领域。运筹学是一门多学科交叉的科学,它致力于通过数学、统计学和计算机科学等方法,解决实际问题中的决策和优化问题。线性规划广泛应用于经济、工程、生产、物流等领域的决策问题,如资源分配、生产计划、投资组合等。

2.线性规划问题形式化地描述

(1)决策变量(Decision Variables): 这些是需要在问题中确定的变量,可以是任何可以进行调整以达到最优解的量。例如,生产某种产品的数量、投资某项资产的金额等。
(2)目标函数(Objective Function): 这是需要最大化或最小化的线性函数。它表示你希望优化的目标,可以是成本、利润、产量等。
(3)约束条件(Constraints): 这些是对决策变量的限制条件,可能涉及资源的限制、技术约束等。约束条件通常是一组线性等式或不等式。
(4)非负约束条件(Non-negativity Constraints): 决策变量通常不能为负数,因为它们表示数量或金额等。

3.数学形式表示

最大化(或最小化):c₁x₁ + c₂x₂ + … + cₙxₙ

约束条件:
A₁₁x₁ + A₁₂x₂ + … + A₁ₙxₙ ≤ b₁
A₂₁x₁ + A₂₂x₂ + … + A₂ₙxₙ ≤ b₂

Aₘ₁x₁ + Aₘ₂x₂ + … + Aₘₙxₙ ≤ bₘ

x₁, x₂, …, xₙ ≥ 0
其中,c₁, c₂, …, cₙ 是目标函数的系数,x₁, x₂, …, xₙ 是决策变量,Aᵢⱼ 是约束矩阵中的系数,bᵢ 是约束的右侧值。

4.解线性规划问题的目标
  找到满足约束条件的决策变量值,使得目标函数取得最大(或最小)值。常用的线性规划求解算法包括单纯形法、内点法、二次割平面法等。
在这里插入图片描述

二、例题

例 1:某机床厂生产甲、乙两种机床,每台销售后的利润分别为 4000 元与 3000 元。生产甲机床需用 A、B 机器加工,加工时间分别为每台 2 小时和 1 小时;生产乙机床需用 A、B、C 三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为 A 机器 10 小时、B 机器 8 小时和C 机器 7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

在这里插入图片描述

三、使用软件及解题

例 1 公式转为matlab形式求解

在这里插入图片描述
在这里插入图片描述

(2)求解的Matlab程序如下


f=[-2; -3; 5];
a=[-2,5,-1;1,3,1]; b=[-10;12];
aeq=[1,1,1];
beq=7;
[x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
x, y=-y
http://www.lryc.cn/news/128193.html

相关文章:

  • 【推荐】深入浅出学习Spring框架【中】
  • 使用 HTML、CSS 和 JavaScript 创建多步骤表单
  • C语言笔试训练【第九天】
  • 左邻右舍裂差法求和 以及 连续自然数的立方和公式
  • 阿里云故障洞察提效 50%,全栈可观测建设有哪些技术要点?
  • docker run 命令30个常用参数详解
  • [kali]kali linux镜像下载地址
  • 考研408 | 【操作系统】操作系统的概述
  • VM部署CentOS并且设置网络
  • 多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测
  • 深入Redis线程模型
  • idea cannot download sources 解决方法
  • CS:GO升级 Linux不再是“法外之地”
  • 手写spring笔记
  • shell的两种属性: 交互(interactive)与登录(login)
  • 实现简单的element-table的拖拽效果
  • Web网页浏览器远程访问jupyter notebook服务器【内网穿透】
  • 干翻Dubbo系列第十一篇:Dubbo常见协议与通信效率对比
  • 春秋云镜 CVE-2020-17530
  • 【java毕业设计】基于Spring Boot+Vue+mysql的论坛管理系统设计与实现(程序源码)-论坛管理系统
  • 华为在ospf area 0单区域的情况下结合pbr对数据包的来回路径进行控制
  • PyQt5登录界面跳转
  • git add 用法
  • 系统架构设计师---2018年下午试题1分析与解答(试题三)
  • 面试时如何回答接口测试怎么进行
  • 【LeetCode】647.回文子串
  • 【Git】SSH到底是什么
  • 当你出差在外时,怎样轻松访问远程访问企业局域网象过河ERP系统?
  • 机器学习与模型识别1:SVM(支持向量机)
  • 在CentOS7.9上安装最新版本Docker安装步骤