当前位置: 首页 > article >正文

外点惩罚函数法·约束优化问题

外点惩罚函数法·约束优化问题

       外点法惩罚函数(r增加,SUMT.java)用于求解约束优化问题,解题步骤如下:

       Step1 输入目标函数与约束方程,构建外点惩罚函数法求解方程,求解初始化。

       Step2 对求解方程进行一次无约束优化方法求解(鲍威尔BWE),得到新解。

       Step3 新解与原解求误差,如误差满足精度要求,则输出解,否则增加因子r,执行Step 2。

       鲍威尔法(BWE.java)是N维无约束求解方法,需要调用一维求解方法,一维求解方法采用黄金分割法(GSM.java)。

       在实现算法的代码中,我去掉了输入处理,人为地将输入确定下来,可减少代码篇幅。

       我会将文件打包放入我的下载,欢迎大家一起交流。


(1)外点法惩罚函数 SUMT.java:

package ODM.Method;import java.util.Arrays;
/** 无约束优化方法:惩罚函数法·外点法*/
public class SUMT {private int n = 6;							// 维数,变量个数private final double eps = 1e-5;			// 精度private final double c = 5;				// 递增系数private double r = 0.1;					// 惩罚因子,趋向无穷public SUMT(){Finit();AlgorithmProcess();AnswerOutput();}// 结果private double[] xs;						private double ans;private void Finit(){xs = new double[n];Arrays.fill(xs, 0);ans = -1;//xs[0] = xs[1] = xs[2] = xs[4] = 1;	xs[3] = 3;	xs[5] = 5;}// 算法主要流程private void AlgorithmProcess(){int icnt = 0;						// 迭代次数double[] x = new double[n];		// 转化为无约束优化问题的解while(true){icnt++;BWE temp = new BWE(n, r, xs);	// 采用鲍威尔方法求函数最优解x = temp.retAns();if(retOK(x) <= eps){			// 满足精度要求for(int i = 0; i < n; i++)xs[i] = x[i];ans = temp.mAns();break;}r = c * r;for(int i = 0; i < n; i++)xs[i] = x[i];}System.out.println("迭代次数:" + icnt);}// 收敛条件(只有一个,不完善)private double retOK(double[] x){double sum = 0;for(int i = 0; i < n; i++){sum += Math.pow(x[i] - xs[i], 2);}return Math.sqrt(sum);}// 结果输出private void AnswerOutput(){for(int i = 0; i < n; i++)System.out.printf("%.6f\t", xs[i]);System.out.printf("%.6f\n", ans);}public static void main(String[] args) {// TODO Auto-generated method stubnew SUMT();}}

(2)鲍威尔法 BWE.java:

package ODM.Method;import java.util.Arrays;public class BWE {private double r;// 初始化变量private double[] x0;						// 初始解集private double[][] e;						// 初始方向private int N;final private double eps = 1e-5;private Func F;// 初始化:初始点, 初始矢量(n 个,n*n 矩阵), 维数private void Init(int n){this.x0 = new double[n];if(r == -1)Arrays.fill(this.x0, 0);else{}this.e = new double[n][n];for(int i = 0; i < n; i++){for(int j = 0; j < n; j++){if(i != j)e[i][j] = 0;else e[i][j] = 1;}}this.N = n;if(r != -1)F = new Func(r);elseF = new Func();}// 搜索点, 方向矢量private double[][] x;private double[][] d;// 方向重排, 队列操作private void queueDir(double[] X){// 删去首方向for(int i = 0; i < N-1; i++){for(int j = 0; j < N; j++){d[i][j] = d[i+1][j];}}// 新方向插入队尾for(int i = 0; i < N; i++)d[N-1][i] = X[i];}private void Process(){x = new double[N+1][N];d = new double[N][N];for(int j = 0; j < N; j++)x[0][j] = x0[j];for(int i = 0; i < N; i++){for(int j = 0; j < N; j++){d[i][j] = e[i][j];}}int k = 0;							// 迭代次数while(k < N){for(int i = 1; i <= N; i++){GSM t = new GSM(F, x[i-1], d[i-1]);x[i] = t.getOs();}double[] X = new double[N];for(int i = 0; i < N; i++)X[i] = x[N][i] - x[0][i];queueDir(X);GSM t = new GSM(F, x[N], X);x[0] = t.getOs();k++;}}// 答案打印private void AnswerOutput(){for(int i = 0; i < N; i++){System.out.printf("x[%d] = %.6f\n", i+1, x[0][i]);
//			System.out.print(x[0][i] + " ");}System.out.printf("最小值:%.6f\n", F.fGetVal(x[0]));
//		System.out.println(": " + F.fGetVal(x[0]));}public BWE(int n){this.r = -1;Init(n);Process();AnswerOutput();}public BWE(int n, double r, double[] x){this.r = r;Init(n);for(int i = 0; i < n; i++)x0[i] = x[i];Process();}// 返回结果,解向量和最优值public double[] retAns(){return x[0];}public double mAns(){return F.fGetVal(x[0], 0);}/*public static void main(String[] args) {// TODO Auto-generated method stubnew BWE(2);}*/}

(3)黄金分割 GSM.java:

package ODM.Method;
/** 黄金分割法*/
public class GSM {private int N;																// 维度private final double landa = (Math.sqrt(5)-1)/2;							// 0.618private double[] x1;private double[] x2;private double[] os;private final double eps = 1e-5;											// 解精度private ExtM EM;															// 用于获取外推法结果// 最优值输出public double[] getOs() {return os;}// 函数, 初始点, 方向矢量public GSM(Func Sample, double[] x, double[] e) {//for(int i = 0; i < e.length; i++)System.out.print(e[i] + " ");System.out.println();initial(Sample, x, e);process(Sample);AnswerPrint(Sample);}// 结果打印private void AnswerPrint(Func Sample) {os = new double[N];for(int i = 0; i < N; i++)os[i] = 0.5*(x1[i] + x2[i]);//		System.out.println("os = " + os[0] + " " + os[1]);
//		System.out.println("ans = " + Sample.fGetVal(os));}// 向量范值private double FanZhi(double[] b, double[] a){double sum = 0;for(int i = 0; i < N; i++){if(b[i] - a[i] != 0 && b[i] == 0)return eps*(1e10);if(b[i] == 0)continue;sum += Math.pow((b[i] - a[i]) / b[i], 2);}return Math.pow(sum, 0.5);}// 算法主流程private void process(Func Sample) {double[] xx1 = new double[N];SubArraysCopy(xx1);double yy1 = Sample.fGetVal(xx1);double[] xx2 = new double[N];AddArraysCopy(xx2);double yy2 = Sample.fGetVal(xx2);// 迭代过程while(true){if(yy1 >= yy2){ArraysCopy(xx1, x1);ArraysCopy(xx2, xx1);	yy1 = yy2;AddArraysCopy(xx2);yy2 = Sample.fGetVal(xx2);}else{ArraysCopy(xx2, x2);ArraysCopy(xx1, xx2);	yy2 = yy1;SubArraysCopy(xx1);yy1 = Sample.fGetVal(xx1);}//System.out.println(FanZhi(x2, x1) + " / " + Math.abs((yy2 - yy1)/yy2));if(FanZhi(x2, x1) < eps && Math.abs(yy2 - yy1) < eps)break;}}// 获得外推法结果:左右边界private void initial(Func Sample, double[] x, double[] e) {N = x.length;EM = new ExtM(Sample, x, e);x1 = EM.getX1();x2 = EM.getX3();}// 向量赋值private void ArraysCopy(double[] s, double[] e){for(int i = 0; i < N; i++)e[i] = s[i];}// + landaprivate void AddArraysCopy(double[] arr){for(int i = 0; i < N; i++)arr[i] = x1[i] + landa*(x2[i] - x1[i]);}// - landaprivate void SubArraysCopy(double[] arr){for(int i = 0; i < N; i++)arr[i] = x2[i] - landa*(x2[i] - x1[i]);}/*public static void main(String[] args) {// TODO Auto-generated method stubdouble[] C = {0, 0};double[] d = {1, 0};new GSM(new Func(), C, d);}*/
}


以上算法文件包含函数方程,黄金分割时有一维搜索的外推法确定“高低高”区间。

函数方程 Func.java,外推法 ExtM.java。

Func.java:

package ODM.Method;public class Func {private int N;								// N 维private double[] left;						// 函数左边界private double[] right;					// 函数右边界private double r;public Func() {r = -1;}public Func(double r) {this.r = r;}// 定义函数与函数值返回public double fGetVal(double[] x){if(r != -1)return fGetVal(x, r);// 10*(x1+x2-5)^2 + (x1-x2)^2return 10*Math.pow(x[0]+x[1]-5, 2) + Math.pow(x[0]-x[1], 2);//}private double max(double a, double b){return a > b ? a : b;}public double fGetVal(double[] x, double r){double ret = 0;
//		function f1
//		ret =  Math.pow(x[0]-5, 2) + 4*Math.pow(x[1]-6, 2)
//				+ r * (
//				+ Math.pow(max(64-x[0]*x[0]-x[1]*x[1], 0), 2)
//				+ Math.pow(max(x[1]-x[0]-10, 0),  0)
//				+ Math.pow(max(x[0]-10, 0), 2)
//				);//		function f2
//		ret = x[0]*x[0] + x[1]*x[1] + r*(1-x[0]>0 ? 1-x[0] : 0)*(1-x[0]>0 ? 1-x[0] : 0);//		function f3ret = Math.pow(x[0]-x[3], 2) + Math.pow(x[1]-x[4], 2) + Math.pow(x[2]-x[5], 2) + r * (+ Math.pow(max(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]-5, 0), 2)+ Math.pow(max(Math.pow(x[3]-3, 2)+x[4]*x[4]-1, 0), 2)+ Math.pow(max(x[5]-8, 0), 2) + Math.pow(max(4-x[5], 0), 2));return ret;}
}

ExtM.java:

package ODM.Method;/** 外推法确定“高-低-高”区间*/
public class ExtM {private int N;							// 函数维数private double[] x1;private double[] x2;private double[] x3;private double y1;private double y2;private double y3;private double h;						// 步长private double[] d;					// 方向矢量public double[] getX1() {return x1;}public double[] getX2() {return x2;}public double[] getX3() {return x3;}public double getH() {return h;}// 函数, 初始点,方向public ExtM(Func Sample, double[] x, double[] e) {initial(Sample, x, e);process(Sample);AnswerPrint();}// 初始化阶段private void initial(Func Sample, double[] x, double[] e){N = x.length;x1 = new double[N];x2 = new double[N];x3 = new double[N];h = 0.01;d = new double[N];ArraysCopy(e, 0, d);//for(int i = 0; i < d.length; i++)System.out.print(d[i]);System.out.println();ArraysCopy(x, 0, x1);y1 = Sample.fGetVal(x1);ArraysCopy(x, h, x2);y2 = Sample.fGetVal(x2);}// 循环部分private void process(Func Sample){if(y2 > y1){h = -h;ArraysCopy(x1, 0, x3);y3 = y1;}else{ArraysCopy(x2, h, x3);	y3 = Sample.fGetVal(x3);}while(y3 < y2){h = 2*h;
//			System.out.println("h = " + h);ArraysCopy(x2, 0, x1);		y1 = y2;ArraysCopy(x3, 0, x2);		y2 = y3;ArraysCopy(x2, h, x3);		y3 = Sample.fGetVal(x3);
//			System.out.println("x1 = " + x1[0] + " " + x1[1] + " y1 = " + y1);
//			System.out.println("x2 = " + x2[0] + " " + x2[1] + " y2 = " + y2);
//			System.out.println("x3 = " + x3[0] + " " + x3[1] + " y3 = " + y3);}}// 打印算法结果private void AnswerPrint(){
//		System.out.println("x1 = " + x1[0] + " " + x1[1] + " y1 = " + y1);
//		System.out.println("x2 = " + x2[0] + " " + x2[1] + " y2 = " + y2);
//		System.out.println("x3 = " + x3[0] + " " + x3[1] + " y3 = " + y3);}// 向量转移private void ArraysCopy(double[] s, double c, double[] e){for(int i = 0; i < s.length; i++)e[i] = d[i]*c + s[i];}/*public static void main(String[] args) {// TODO Auto-generated method stub// new ExtM();}*/}


http://www.lryc.cn/news/2421144.html

相关文章:

  • Matlab在高等数学中的实际应用及源代码
  • fifa 14手机版 android 4.2.1,FIFA 14完整解锁版
  • 汉字自动生成拼音码
  • python打印万年历
  • 旅游学概论期末复习提纲 试题(含答案)
  • ubuntu 超级优化,不仅仅是禁用几个服务哦
  • [DSP]基础概念
  • 搭建一个简易的springboot+springcloud项目
  • npm ERR! errno CERT_HAS_EXPIRED(淘宝镜像证书过期)
  • HTML5期末大作业:我的家乡网站设计——我的家乡
  • 如何创建一个有吸引力的博客标题? 用实际例子解释!
  • 【笔记------LCD1602 SCM1602H-P9-Ver1.2】------ 4位数据驱动
  • 电脑出现无法访问您试图使用的功能所在的网络位置怎么办?(清除软件卸载残留)
  • JSP详解,看这一篇就够了(含示例)
  • DNS欺骗劫持与防御策略
  • 鸿蒙生死印作用,逆天邪神:鸿蒙生死印应该有个BUG能力,两位梵天老祖身上有提示...
  • 常见滤波算法(Python版本)
  • Vue3 -- 基于Websocket实现简易聊天室
  • 清除移动硬盘中jwgkvsq.vmx病毒
  • 什么是工业微型计算机,工业用微型计算机第一讲.ppt
  • C语言之网络编程(服务器和客户端)
  • HTML入门及其概念简析
  • SQL:select case 用法详解 带例子 图解说明 sqlserver2000
  • springboot的多模块开发
  • 开源网上商城程序(简介国内外开源网店系统)
  • 破解硬盘还原卡与还原精灵
  • 云南省增值税发票综合平台(修订版)----发票抵扣勾选教程---
  • 注册表无法修改解决
  • Android之MediaPlayer详解
  • Keil5-MDK 使用编译步骤及异常与修改(生成axf文件和bin文件)