当前位置: 首页 > article >正文

Java Map完全指南:从基础到高级应用

文章目录

    • 1. Map接口概述
      • Map的基本特性
    • 2. Map接口的核心方法
      • 基本操作方法
      • 批量操作方法
    • 3. 主要实现类详解
      • 3.1 HashMap
      • 3.2 LinkedHashMap
      • 3.3 TreeMap
      • 3.4 ConcurrentHashMap
    • 4. 高级特性和方法
      • 4.1 JDK 1.8新增方法
      • 4.2 Stream API结合使用
    • 5. 性能比较和选择建议
      • 性能对比表
      • 选择建议
    • 6. 最佳实践和注意事项
      • 6.1 正确重写hashCode()和equals()
      • 6.2 初始容量设置
      • 6.3 避免并发修改异常
      • 6.4 使用不可变Map
    • 7. 实际应用场景
      • 7.1 缓存实现
      • 7.2 统计词频
      • 7.3 分组操作


1. Map接口概述

Map是Java集合框架中的核心接口之一,用于存储键值对(key-value pairs)。与List和Set不同,Map不是Collection接口的子接口,而是一个独立的顶级接口。Map中的每个键都是唯一的,但值可以重复。

Map的基本特性

  • 键(Key)必须唯一,值(Value)可以重复
  • 一个键只能映射到一个值
  • 不同键可以映射到相同的值
  • 键和值都可以为null(取决于具体实现)

2. Map接口的核心方法

基本操作方法

// 添加键值对
V put(K key, V value)// 获取指定键的值
V get(Object key)// 移除指定键的键值对
V remove(Object key)// 检查是否包含指定键
boolean containsKey(Object key)// 检查是否包含指定值
boolean containsValue(Object value)// 获取Map大小
int size()// 检查Map是否为空
boolean isEmpty()// 清空Map
void clear()

批量操作方法

// 将另一个Map的所有键值对添加到当前Map
void putAll(Map<? extends K, ? extends V> m)// 获取所有键的集合
Set<K> keySet()// 获取所有值的集合
Collection<V> values()// 获取所有键值对的集合
Set<Map.Entry<K, V>> entrySet()

3. 主要实现类详解

3.1 HashMap

HashMap是Map接口最常用的实现类,基于哈希表实现。

特点:

  • 允许null键和null值
  • 非线程安全
  • 无序存储
  • 平均时间复杂度:O(1)

内部结构:

  • JDK 1.8之前:数组 + 链表
  • JDK 1.8及之后:数组 + 链表 + 红黑树
// HashMap示例
Map<String, Integer> hashMap = new HashMap<>();
hashMap.put("apple", 10);
hashMap.put("banana", 20);
hashMap.put("orange", 15);// 遍历HashMap
for (Map.Entry<String, Integer> entry : hashMap.entrySet()) {System.out.println(entry.getKey() + ": " + entry.getValue());
}

3.2 LinkedHashMap

LinkedHashMap继承自HashMap,维护了插入顺序或访问顺序。

特点:

  • 保持插入顺序或访问顺序
  • 基于哈希表和双向链表实现
  • 性能略低于HashMap
// LinkedHashMap示例
Map<String, Integer> linkedHashMap = new LinkedHashMap<>();
linkedHashMap.put("first", 1);
linkedHashMap.put("second", 2);
linkedHashMap.put("third", 3);// 输出顺序与插入顺序一致
linkedHashMap.forEach((k, v) -> System.out.println(k + ": " + v));

3.3 TreeMap

TreeMap基于红黑树实现,是有序的Map。

特点:

  • 根据键的自然顺序或自定义Comparator排序
  • 不允许null键,但允许null值
  • 时间复杂度:O(log n)
// TreeMap示例
Map<String, Integer> treeMap = new TreeMap<>();
treeMap.put("zebra", 26);
treeMap.put("apple", 1);
treeMap.put("banana", 2);// 按键的字典序输出
treeMap.forEach((k, v) -> System.out.println(k + ": " + v));
// 输出: apple: 1, banana: 2, zebra: 26

3.4 ConcurrentHashMap

ConcurrentHashMap是线程安全的HashMap实现。

特点:

  • 线程安全
  • 高并发性能
  • 不允许null键和null值
  • 使用分段锁机制(JDK 1.8改为CAS + synchronized)
// ConcurrentHashMap示例
Map<String, Integer> concurrentMap = new ConcurrentHashMap<>();
concurrentMap.put("thread1", 1);
concurrentMap.put("thread2", 2);// 原子操作
concurrentMap.putIfAbsent("thread3", 3);
concurrentMap.computeIfAbsent("thread4", k -> 4);

4. 高级特性和方法

4.1 JDK 1.8新增方法

Map<String, Integer> map = new HashMap<>();
map.put("a", 1);
map.put("b", 2);// getOrDefault - 获取值,如果不存在返回默认值
Integer value = map.getOrDefault("c", 0); // 返回0// putIfAbsent - 如果键不存在则添加
map.putIfAbsent("c", 3);// replace - 替换指定键的值
map.replace("a", 10);// compute - 计算新值
map.compute("a", (k, v) -> v * 2); // a的值变为20// merge - 合并值
map.merge("d", 1, (oldVal, newVal) -> oldVal + newVal);

4.2 Stream API结合使用

Map<String, Integer> map = new HashMap<>();
map.put("apple", 10);
map.put("banana", 20);
map.put("orange", 15);// 过滤并收集到新Map
Map<String, Integer> filtered = map.entrySet().stream().filter(entry -> entry.getValue() > 10).collect(Collectors.toMap(Map.Entry::getKey,Map.Entry::getValue));// 转换值
Map<String, String> transformed = map.entrySet().stream().collect(Collectors.toMap(Map.Entry::getKey,entry -> "Count: " + entry.getValue()));

5. 性能比较和选择建议

性能对比表

实现类查找插入删除有序性线程安全
HashMapO(1)O(1)O(1)
LinkedHashMapO(1)O(1)O(1)插入顺序
TreeMapO(log n)O(log n)O(log n)键排序
ConcurrentHashMapO(1)O(1)O(1)

选择建议

使用HashMap当:

  • 需要最快的查找、插入、删除操作
  • 不需要保持顺序
  • 单线程环境

使用LinkedHashMap当:

  • 需要保持插入顺序或访问顺序
  • 需要实现LRU缓存

使用TreeMap当:

  • 需要按键排序
  • 需要范围查询功能

使用ConcurrentHashMap当:

  • 多线程环境
  • 需要高并发性能

6. 最佳实践和注意事项

6.1 正确重写hashCode()和equals()

public class Person {private String name;private int age;@Overridepublic boolean equals(Object obj) {if (this == obj) return true;if (obj == null || getClass() != obj.getClass()) return false;Person person = (Person) obj;return age == person.age && Objects.equals(name, person.name);}@Overridepublic int hashCode() {return Objects.hash(name, age);}
}

6.2 初始容量设置

// 如果已知Map的大小,设置初始容量可以提高性能
Map<String, Integer> map = new HashMap<>(16);// 对于已知大小的数据,计算合适的初始容量
int expectedSize = 100;
int initialCapacity = (int) (expectedSize / 0.75) + 1;
Map<String, Integer> optimizedMap = new HashMap<>(initialCapacity);

6.3 避免并发修改异常

Map<String, Integer> map = new HashMap<>();
map.put("a", 1);
map.put("b", 2);// 错误的做法 - 会抛出ConcurrentModificationException
// for (String key : map.keySet()) {
//     if (key.equals("a")) {
//         map.remove(key);
//     }
// }// 正确的做法 - 使用Iterator
Iterator<Map.Entry<String, Integer>> iterator = map.entrySet().iterator();
while (iterator.hasNext()) {Map.Entry<String, Integer> entry = iterator.next();if (entry.getKey().equals("a")) {iterator.remove();}
}

6.4 使用不可变Map

// 创建不可变Map
Map<String, Integer> immutableMap = Map.of("apple", 10,"banana", 20,"orange", 15
);// 或者使用Collections.unmodifiableMap()
Map<String, Integer> originalMap = new HashMap<>();
originalMap.put("a", 1);
Map<String, Integer> unmodifiableMap = Collections.unmodifiableMap(originalMap);

7. 实际应用场景

7.1 缓存实现

public class LRUCache<K, V> extends LinkedHashMap<K, V> {private final int maxSize;public LRUCache(int maxSize) {super(16, 0.75f, true); // accessOrder = truethis.maxSize = maxSize;}@Overrideprotected boolean removeEldestEntry(Map.Entry<K, V> eldest) {return size() > maxSize;}
}

7.2 统计词频

public Map<String, Integer> countWords(String text) {Map<String, Integer> wordCount = new HashMap<>();String[] words = text.toLowerCase().split("\\s+");for (String word : words) {wordCount.merge(word, 1, Integer::sum);}return wordCount;
}

7.3 分组操作

// 将学生按年级分组
List<Student> students = getStudents();
Map<String, List<Student>> studentsByGrade = students.stream().collect(Collectors.groupingBy(Student::getGrade));
http://www.lryc.cn/news/2404684.html

相关文章:

  • jvm 垃圾收集算法 详解
  • [特殊字符] 深入理解 Linux 内核进程管理:架构、核心函数与调度机制
  • Nginx Stream 层连接数限流实战ngx_stream_limit_conn_module
  • Spring Boot 定时任务的使用
  • Flutter:下拉框选择
  • SpringAI(GA):Nacos2下的分布式MCP
  • AC68U刷梅林384/386版本后不能 降级回380,升降级解决办法
  • [AI绘画]sd学习记录(二)文生图参数进阶
  • CRM管理系统中的客户分类与标签管理技巧:提升转化率的核心策略
  • 怎么解决cesium加载模型太黑,程序崩溃,不显示,位置不对模型太大,Cesium加载gltf/glb模型后变暗
  • 【AI系列】BM25 与向量检索
  • windows10搭建nfs服务器
  • simulink这边重新第二次仿真时,直接UE5崩溃,然后simulink没有响应
  • react 常见的闭包陷阱深入解析
  • 【CATIA的二次开发22】关于抽象对象Document概念详细总结
  • 模拟法解题的思路与算法分享
  • mysql密码正确SpringBoot和Datagrip却连接不上
  • 高保真组件库:数字输入框
  • 人工智能赋能高中学科教学的应用与前景研究
  • 【Linux】awk 命令详解及使用示例:结构化文本数据处理工具
  • 紫光同创FPGA系列实现Aurora 8b/10b协议
  • DAY 44 预训练模型
  • [Harmony]颜色初始化
  • 指针与函数参数传递详解 —— 值传递与地址传递的区别及应用
  • 【NLP中向量化方式】序号化,亚编码,词袋法等
  • C++学习-入门到精通【16】自定义模板的介绍
  • 关于脏读,幻读,可重复读的学习
  • 源码级拆解:如何搭建高并发「数字药店+医保购药」一体化平台?
  • 旅行商问题(TSP)的 C++ 动态规划解法教学攻略
  • unix/linux,sudo,其内部结构机制