当前位置: 首页 > article >正文

基于 BGE 模型与 Flask 的智能问答系统开发实践

基于 BGE 模型与 Flask 的智能问答系统开发实践

一、前言

在人工智能快速发展的今天,智能问答系统成为了提升信息检索效率和用户体验的重要工具。本文将详细介绍如何利用 BGE(Base General Embedding)模型、Faiss 向量检索库以及 Flask 框架,搭建一个具备文本检索和问答功能的 Web 服务。通过分步解析代码实现与部署流程,帮助读者理解智能问答系统的核心技术逻辑。

二、技术栈选择

1. 核心模型:BGE

  • BGE-base-zh-v1.5:中文通用语义向量模型,支持文本语义编码,可将问题转换为高维向量,用于语义相似度计算。
  • BGE-reranker-base:重排模型,对粗排结果进行精细化排序,提升检索准确性。

2. 向量检索:Faiss

Facebook 开源的高效向量检索库,支持 L2 距离度量和快速近似最近邻搜索,适合大规模向量数据的实时检索。

3. 服务框架:Flask

轻量级 Python Web 框架,便于快速搭建 API 接口和前端页面,适合原型开发与小型服务部署。

三、系统开发步骤

1. 环境搭建与依赖安装

bash

# 安装依赖库
pip install pandas faiss-cpu flask FlagEmbedding

2. 数据准备与预处理

  • 数据格式:创建qa.csv文件,包含question(问题)和answer(答案)两列,示例数据如下:

    questionanswer
    北京景点推荐故宫、颐和园、八达岭长城...
    年轻人聚集的步行街三里屯、南锣鼓巷、王府井...
    ......
  • 数据加载:读取部分数据构建语料库和答案列表(示例取前 10 条):

    python

    运行

    ​
    import pandas as pd
    df = pd.read_csv('data/qa.csv')
    corpus = list(df['question'][:10])  # 问题语料库
    answers = list(df['answer'][:10])    # 答案列表​

3. 语义向量编码与索引构建

(1)加载 BGE 模型并编码语料库

python

运行

​
from FlagEmbedding import FlagModel
model = FlagModel('bge-base-zh-v1.5')  # 初始化基础模型
corpus_embeddings = model.encode_corpus(corpus)  # 编码问题向量(不添加查询指令)​
(2)使用 Faiss 创建向量索引

python

运行

import faiss
dim = corpus_embeddings.shape[-1]  # 获取向量维度
index = faiss.IndexFlatL2(dim)     # 使用L2距离度量
index.add(corpus_embeddings)       # 将向量存入索引

4. 文本检索逻辑实现

(1)粗排:Faiss 快速检索相似问题

python

运行

​
def rerank_search(query, index, corpus, model):# 编码查询问题(添加查询指令优化向量表示)query_embeddings = model.encode_queries([query])# 粗排:检索前5个相似问题(scores为距离,indexes为索引)scores, indexes = index.search(query_embeddings, k=5)candidate_ids = indexes[0]  # 提取候选问题索引candidate_texts = [corpus[i] for i in candidate_ids]  # 获取候选问题文本​
(2)精排:BGE-reranker 重排候选结果

python

运行

​
from FlagEmbedding import FlagReranker
reranker = FlagReranker('bge-reranker-base')  # 初始化重排模型
# 计算查询与候选问题的相关性分数
rerank_scores = reranker.compute_score([(query, text) for text in candidate_texts])
# 按分数降序排序,获取最优答案索引
best_id = candidate_ids[rerank_scores.argmax()]
return answers[best_id]​

5. Flask 服务封装与接口开发

(1)初始化 Flask 应用并加载模型

python

运行

​
from flask import Flask, request, render_template
app = Flask(__name__)# 全局加载数据和模型(避免重复初始化)
corpus, answers, model, index = load_data_and_model()  # 自定义加载函数​
(2)定义 API 接口与前端页面
  • POST 接口:处理查询请求并返回 JSON 结果

    python

    运行

    ​
    @app.route('/api/search', methods=['POST'])
    def api_search():query = request.form.get('query')if not query:return jsonify({"error": "查询内容为空"})answer = rerank_search(query, index, corpus, model)return jsonify({"query": query, "answer": answer})​

  • 前端页面:提供用户输入框和结果展示(templates/index.html

    html

    预览

    ​
    <!DOCTYPE html>
    <html>
    <head><title>智能问答系统</title>
    </head>
    <body><h1>智能问答系统</h1><form method="post" action="/search"><input type="text" name="query" placeholder="请输入问题..." required><button type="submit">搜索答案</button></form>{% if answer %}<h3>查询结果:</h3><p>{{ answer }}</p>{% endif %}
    </body>
    </html>​

(3)路由绑定与服务启动

python

运行

​
@app.route('/search', methods=['GET', 'POST'])
def search():if request.method == 'POST':query = request.form['query']answer = rerank_search(query, index, corpus, model)return render_template('index.html', answer=answer)return render_template('index.html')if __name__ == '__main__':app.run(host='0.0.0.0', port=5000, debug=True)​

四、系统部署与测试

1. 目录结构

plaintext

project-root/
├── data/
│   └── qa.csv          # 问答数据集
├── templates/
│   └── index.html      # 前端页面
├── qa.py               # 主程序文件
└── requirements.txt    # 依赖清单

2. 启动服务

bash

python qa.py
# 访问 http://localhost:5000 测试系统

3. 测试示例

  • 输入查询:“北京适合年轻人的夜生活地点”
  • 预期输出:“三里屯酒吧街、什刹海酒吧街、星吧路酒吧街...”

五、优化方向与扩展建议

  1. 数据规模扩展:增加语料库数据量,提升检索覆盖范围。
  2. 模型优化:尝试 BGE-large 版本或微调模型适应特定领域。
  3. 性能优化
    • 使用 Faiss 的 IVF 索引(如IndexIVFFlat)加速大规模数据检索;
    • 部署模型到 GPU 环境,提升编码速度。
  4. 功能扩展
    • 添加多轮对话支持;
    • 集成图片、文档等多模态输入;
    • 开发管理后台用于数据维护。

六、总结

本文通过实战案例展示了从语义编码、向量检索到 Web 服务部署的完整流程。基于 BGE 和 Faiss 的问答系统能够有效处理中文语义检索任务,而 Flask 框架则提供了便捷的服务化能力。该方案可应用于企业客服、知识库检索、智能助手等场景,为实际业务提供智能化支持。未来可结合更多 NLP 技术(如文本生成、意图识别)进一步提升系统的交互能力和实用性。

http://www.lryc.cn/news/2403181.html

相关文章:

  • 机器学习:决策树和剪枝
  • vscode自定义主题语法及流程
  • vue中加载Cesium地图(天地图、高德地图)
  • SpringBoot整合RocketMQ与客户端注意事项
  • Github 2025-06-04 C开源项目日报 Top7
  • 大二下期末
  • LeetCode 热题 100 74. 搜索二维矩阵
  • 解决 VSCode 中无法识别 Node.js 的问题
  • Mysql的卸载与安装
  • ES101系列09 | 运维、监控与性能优化
  • Java常用的判空方法
  • Excel处理控件Aspose.Cells教程:使用 C# 在 Excel 中创建组合图表
  • 【多线程初阶】阻塞队列 生产者消费者模型
  • 《100天精通Python——基础篇 2025 第5天:巩固核心知识,选择题实战演练基础语法》
  • 机器人夹爪的选型与ROS通讯——机器人抓取系统基础系列(六)
  • 第二十八章 RTC——实时时钟
  • 使用 DuckLake 和 DuckDB 构建 S3 数据湖实战指南
  • 大语言模型提示词(LLM Prompt)工程系统性学习指南:从理论基础到实战应用的完整体系
  • 如何基于Mihomo Party http端口配置git与bash命令行代理
  • CMake 为 Debug 版本的库或可执行文件添加 d 后缀
  • Linux 特殊权限位详解:SetUID, SetGID, Sticky Bit
  • 埃文科技智能数据引擎产品入选《中国网络安全细分领域产品名录》
  • 使用VTK还是OpenGL集成到qt程序里哪个好?
  • Java-IO流之打印流详解
  • 高效图像处理:使用 Pillow 进行格式转换与优化
  • Github 2025-06-06 Java开源项目日报Top10
  • 使用 Ansible 在 Windows 服务器上安装 SSL 证书
  • 厂区能源监控系统:网关赋能下的高效能源管理与环保监测
  • CentOS 7 如何安装llvm-project-10.0.0?
  • Cursor 1.0 的核心功能亮点及技术价值分析