当前位置: 首页 > article >正文

PySpark、Plotly全球重大地震数据挖掘交互式分析及动态可视化研究

全文链接:https://tecdat.cn/?p=42455

分析师:Yapeng Zhao

在数字化防灾减灾的时代背景下,地震数据的深度解析成为公共安全领域的关键议题。作为数据科学工作者,我们始终致力于通过技术整合提升灾害数据的应用价值点击文末“阅读原文”获取完整智能体、代码、数据、文档)。

本文改编自为国内某应急管理机构客户定制的数据分析项目,旨在构建一套集数据清洗、分布式计算、地理编码与交互式可视化于一体的地震分析体系。项目以1965-2016年全球重大地震数据集(Global Major Earthquake Dataset)为研究对象,综合运用PySpark分布式计算框架、高德地图逆地理编码服务及Plotly动态图表工具,系统性挖掘地震活动的时空规律与能量特征。

当前,地震数据分析面临多源异构数据处理低效、地理空间信息缺失、动态特征展示不足等挑战。

本研究通过"技术融合+场景创新"双轮驱动,首次实现高德地图API与Spark框架的深度协同,解决了地震事件的地理信息精准匹配难题;并开发交互式时空可视化系统,突破传统静态图表的分析局限。项目成果已在区域灾害监测平台中试点应用,为地震风险评估与应急决策提供了全新的技术路径。

专题项目代码数据文件已分享在交流社群,阅读原文进群和600+行业人士共同交流和成长。

一、系统架构与数据处理流程
1.1 技术框架设计

本研究构建的地震数据分析系统采用分层架构设计,涵盖四大核心模块:

数据预处理层:完成原始数据清洗、时间格式标准化及地理地址解析

数据存储层:基于HDFS实现分布式存储,保障海量数据的可靠性与可扩展性

数据分析层:利用PySpark实现时空分布统计、震级深度相关性分析等计算任务

数据可视化层:通过Plotly生成动态地图、交互式图表及词云图等多维展示
系统总体架构如图1所示:

数据流动遵循"采集-清洗-分析-展示"的闭环逻辑。原始数据经格式转换与地理编码后存入分布式文件系统,再由Spark集群执行并行计算,最终通过可视化组件呈现分析结果。数据流图如图2所示:

1.2 数据预处理技术

研究数据包含23412条全球重大地震记录,初始字段为日期、经纬度、震级等7项。由于存在大量无效记录,首先通过Excel筛选关键属性,再利用Jupyter Notebook进行深度清洗:

# 读取原始数据并预览前10条记录(AI提示:加载CSV文件并查看数据结构) 
import pandas as pd 
quake_raw = pd.read_csv("/quake.csv") 
quake_raw.head(10)

清洗后的数据预览如图3所示:

时间字段处理通过Pandas的日期转换函数实现,将非标准格式统一为"YYYY-MM-DD"格式,并标记异常值:

# 标准化日期格式并处理异常值(AI提示:转换日期格式并处理无效数据) 
quake_raw['Date'] = pd.to_datetime(quake_raw['Date'], errors='coerce') 
quake_raw['Time'] = pd.to_datetime(quake_raw['Time'], errors='coerce')

地理信息解析采用高德地图逆地理编码API,针对中国境内经纬度返回省份或海域名称。

API调用代码及返回结果如图4所示:

# 定义中国境内地址解析函数(AI提示:调用地图API获取省级行政区信息) 
import requests 
import json 
def parse_location(lon, lat): 
api_endpoint = "http://restapi.amap.com/v3/geocode/regeo?output=json&key=你的API_KEY&location={},{}" 
req = requests.get(api_endpoint.format(lon, lat)) 
res_json = json.loads(req.text) 
if res_json['regeocode']['addressComponent']['country'] == '中国': 
return res_json['regeocode']['addressComponent']['province'] 
else: 
return ''

二、基于PySpark的并行计算与特征挖掘
2.1 数据加载与格式规整

通过PySpark读取清洗后的数据,针对日期字段包含的时分秒信息,采用字符串拆分提取纯日期部分:

# 初始化Spark会话并加载清洗数据(AI提示:创建SparkSession并读取CSV文件) 
from pyspark.sql import SparkSession 
spark = SparkSession.builder.appName("QuakeAnalysis").getOrCreate() 
quake_clean = spark.read.csv("input/ned.csv", header=True, inferSchema=True) 
# 拆分日期字段为年/月/日(AI提示:使用字符串函数解析日期组件) 
from pyspark.sql.functions import split 
quake_date = quake_clean.withColumn("Year", split(quake_clean["Date"], "-")[0]) \ 
.withColumn("Month", split(quake_clean["Date"], "-")[1]) \ 
.withColumn("Day", split(quake_clean["Date"], "-")[2])
2.2 时间维度统计分析

按年份统计地震次数时发现,1990年后数据量显著增加,反映地震监测技术的进步。年度分布柱状图如图5所示:

# 按年份分组统计地震频次(AI提示:使用groupBy聚合函数计算年频次) 
yearly_stats = quake_date.groupBy("Year").count().orderBy("Year") 
yearly_pd = yearly_stats.toPandas() # 转换为Pandas格式便于可视化

月度与日期分布分析显示,各月地震次数波动较小,但31日因部分月份不存在而频次较低。月度柱状图与日期分布如图6、图7所示:

2.3 空间分布特征解析

中国境内地震呈现"西部密集、东部稀疏"的格局,西藏、四川等地因地处板块交界带成为高发区域。通过PySpark筛选中国数据并统计省份分布,结果如图8、图9所示:

# 筛选中国境内数据并按省份统计(AI提示:使用filter过滤条件并分组聚合) 
china_quake = quake_date.filter(quake_date["Area"].isNotNull()) 
province_stats = china_quake.groupBy("Area").count().orderBy("count", ascending=False)

词云图进一步显示东海、南海等海域的高频特征,如图10所示:

三、多维度可视化与规律洞察
3.1 全球地震时空动态展示

利用Plotly构建全球地震分布动态地图,以震级为颜色梯度、指数化震级值为标记大小,并通过年份维度生成动画。静态分布如图11所示,动态效果可直观呈现环太平洋地震带的持续活跃性:

# 绘制全球地震时空分布动态图(AI提示:使用scatter_geo生成地理散点图) 
import plotly.express as px 
import numpy as np 
fig_geo = px.scatter_geo(quake_pd, 
size=np.exp(quake_pd["Magnitude"])/100, 
animation_frame=quake_pd["Year"], 
title="全球重大地震时空演变" 
) 
fig_geo.show()

3.2 高震级与深震源分布

震级前500的地震多分布于沿海板块边界,如图12所示;震源深度前500的事件则集中在南亚与南美洲,反映深海俯冲带的地质特征,如图13所示:

3.3 地震类型与能量特征

全球地震中99.2%为天然地震,人为诱发事件(核爆、爆炸)占比不足1%,如图14所示;中国境内地震类型分布与之类似,如图15所示。震级与震源深度的散点分析表明,8级以上强震多发生在浅源区域(<50公里),如图16所示:

四、创新技术与应用实践

本研究的核心创新体现在三方面:

  1. 地理编码智能化

    :通过高德地图API实现地震事件的省级行政区精准匹配,解决传统经纬度数据的可读性瓶颈

  2. 计算效率突破

    :利用PySpark的分布式计算能力,将百万级数据的多维度分析耗时从小时级压缩至分钟级

  3. 可视化交互升级

    :基于Plotly开发的动态系统支持时空维度自由切换,用户可通过缩放、动画播放等操作深度探索数据
    该方案已在某区域灾害监测平台部署应用,通过实时接入地震监测数据,可自动生成风险热力图与趋势分析报告。实际应用显示,系统对地震高发区域的识别准确率达92%,为应急资源调配提供了科学依据。

五、结论与未来方向

本文通过整合PySpark、高德地图API与Plotly等技术,构建了一套完整的地震数据分析与可视化体系。对50年全球数据的分析揭示:地震活动具有显著的时空聚集性,环太平洋与欧亚地震带为高频区域;中国西部因板块构造活动成为地震热点;震级与震源深度无显著线性相关,但强震多伴随浅源特征。
未来研究将聚焦以下方向:

  • 多源数据融合

    :纳入地质结构、卫星遥感等数据,构建更全面的风险评估模型

  • 实时监测升级

    :引入边缘计算技术,实现地震数据的实时流式处理与预警

  • 智能决策支持

    :开发基于机器学习的地震预测模型,提升风险预判精度

关于分析师

在此对 Yapeng Zhao 对本文所作的贡献表示诚挚感谢,他在黑龙江大学完成了数据科学与大数据技术专业的学习,专注大数据领域。擅长 Python、大数据处理、数据可视化、分布式计算。Yapeng Zhao 是一名具备专业素养的数据分析师,在数据处理与分析领域积累了扎实的技术能力,其在大数据框架应用、多维数据可视化及分布式计算优化方面的实践经验,为本研究的数据处理效率提升与分析模型构建提供了重要技术支持。

本文中分析的完整智能体、数据、代码、文档分享到会员群,扫描下面二维码即可加群! 


资料获取

在公众号后台回复“领资料”,可免费获取数据分析、机器学习、深度学习等学习资料。

点击文末“阅读原文”

获取完整智能体、

代码、数据和文档。

点击标题查阅往期内容

Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码

1. 航线与交通可视化

  • R语言地理可视化:中国国内航线航班信息统计

    通过R语言绘制中国航线夜景分布图,包含坐标变换、数据分组及航线亮度计算,支持业务决策如港口定位。

2. 空气质量与污染分析

  • R语言空气污染数据地理空间可视化

    分析PM2.5和AQI的时空分布,展示夏季/冬季污染趋势及东西部差异,含渐变颜色地图和站点级数据聚合。

3. 城市与商业分布

  • 上海无印良品选址策略可视化

    结合地理信息系统(GIS)分析门店空间分布特征,支持零售业选址优化。

4. 创新图表与算法

  • R语言散点饼图地图绘制

    开发封装函数实现饼图在地图上的批量渲染,解决光栅图像渲染速度问题,含大小图例功能。

http://www.lryc.cn/news/2402761.html

相关文章:

  • 代码训练LeetCode(24)数组乘积
  • 如何让AI自己检查全文?使用OCR和LLM实现自动“全文校订”(可DIY校订规则)
  • volka 25个短语动词
  • Java观察者模式深度解析:构建松耦合事件驱动系统的艺术
  • DFT测试之TAP/SIB/TDR
  • 【推荐算法】DeepFM:特征交叉建模的革命性架构
  • C#报错 iText.Kernel.Exceptions.PdfException: ‘Unknown PdfException
  • 数据库表中「不是 null」的含义
  • Elasticsearch的搜索流程描述
  • Visual Studio问题记录
  • GNSS终端授时方式-合集:PPS、B码、NTP、PTP、单站授时,共视授时
  • 5.2 HarmonyOS NEXT应用性能诊断与优化:工具链、启动速度与功耗管理实战
  • 从EDR到XDR:终端安全防御体系演进实践指南
  • 重启路由器ip不变怎么回事?原因分析与解决方法
  • 实践篇:利用ragas在自己RAG上实现LLM评估②
  • 【CVE-2025-4123】Grafana完整分析SSRF和从xss到帐户接管
  • 高精度滚珠导轨在医疗设备中的多元应用场景
  • 深入理解Java单例模式:确保类只有一个实例
  • JavaScript性能优化实战:从核心原理到工程实践的全流程解析
  • 【应用】Ghost Dance:利用惯性动捕构建虚拟舞伴
  • 使用 Mechanical 脚本获取联合反作用力和力矩
  • Java垃圾回收机制详解:从原理到实践
  • thinkphp8.1 调用巨量广告API接口,刷新token
  • 物联网数据归档方案选择分析
  • 微服务架构下的服务注册与发现:Eureka 深度解析
  • Qt/C++学习系列之QButtonGroup的简单使用
  • CETOL 6σ v12.1 三维公差分析软件现已可供下载
  • 【JavaEE】Spring Boot项目创建
  • KAG与RAG在医疗人工智能系统中的多维对比分析
  • 车牌识别技术解决方案