当前位置: 首页 > article >正文

学习笔记(24): 机器学习之数据预处理Pandas和转换成张量格式[2]

学习笔记(24): 机器学习之数据预处理Pandas和转换成张量格式[2]

学习机器学习,需要学习如何预处理原始数据,这里用到pandas,将原始数据转换为张量格式的数据。

学习笔记(23): 机器学习之数据预处理Pandas和转换成张量格式[1]-CSDN博客

下面介绍下:处理缺失值(删除法)

为什么要这样做?

这种处理缺失值的策略很实用,当某列的缺失值比例过高时,保留该列可能会对后续分析造成负面影响。删除缺失值最多的列可以避免在缺失值填充时引入过多噪声,提高数据质量。

原始数据:
   NumRoos Alley   Price
0      NaN  Pave  127500
1      2.0   NaN  106000
2      4.0   NaN  178100
3      NaN   NaN  140000

1、处理缺失值(删除法)

      “NaN”项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑删除法。

1.1、代码

# 处理缺失值
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
# 转换 NumRoos 列为数值类型(将 'NA' 转为 NaN)
inputs['NumRoos'] = pd.to_numeric(inputs['NumRoos'],errors='coerce')# 计算每列的缺失值数量
miss_counts = inputs.isna().sum()
print("\n各列缺失值数量:")
print(miss_counts)# 找出缺失值最多的列
if not miss_counts.empty:max_miss = miss_counts.max()  # 计算最大缺失值数量,结果为3(Alley列有3个缺失值print(max_miss)clos_drop = miss_counts[miss_counts ==max_miss].index.tolist() #筛选出缺失值数量等于最大值的列,miss_counts == max_miss 返回布尔 Seriesinputs = inputs.drop(columns=clos_drop)  #删除筛选出的列print(f"\n已删除缺失值最多的列: {clos_drop}")# 用均值填充 NumRoos 列的缺失值
inputs['NumRoos'] = inputs['NumRoos'].fillna(inputs['NumRoos'].mean())print("\n处理后的数据:")
print(inputs)

代码解析如下

1. 数据分割:提取输入特征和输出标签
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]

inputs:提取数据的前两列(索引 0 和 1)作为特征(NumRoos和Alley)。
outputs:提取第三列(索引 2)作为目标变量(Price)。
2. 将NumRoos列转换为数值类型
inputs['NumRoos'] = pd.to_numeric(inputs['NumRoos'], errors='coerce')

pd.to_numeric(..., errors='coerce'):将字符串类型的数值转换为数字,无法转换的(如NA)会被转为NaN(缺失值)。
3. 计算每列的缺失值数量
miss_counts = inputs.isna().sum()
print("\n各列缺失值数量:")
print(miss_counts)
inputs.isna():返回一个布尔型 DataFrame,标记每个位置是否为缺失值。
.sum():统计每列的True(缺失值)数量。

#筛选出缺失值数量等于最大值的列

clos_drop = miss_counts[miss_counts == max_miss].index.tolist()

这行代码主要做了三件事:筛选、提取索引、转换为列表。

1、筛选操作 missing_counts[...]

     miss_counts == max_miss 返回布尔 Series
     miss_counts[...] 筛选出值为True的行(即Alley)。

# 结果:
# NumRoos    False
# Alley       True
# dtype: bool

2、.index 获取列名

筛选结果是一个新的 Series,我们需要它的索引(也就是列名)

# 结果:
# Index(['Alley'], dtype='object')

3、.tolist() 转换为列表

.index.tolist() 将列名转为列表 ['Alley']。

为什么要转换为列表?

你可能会问:为什么不直接用索引对象,而非要转成列表呢?这主要是为了兼容drop()方法。drop()方法的columns参数可以接受列名列表或索引对象,但列表更灵活,方便后续处理。

关键细节总结
1、缺失值处理策略:
优先删除缺失比例最高的列(Alley列缺失率 75%)。
对剩余列(NumRoos)用均值填充。
2、数据类型转换:
pd.to_numeric(..., errors='coerce') 是处理含缺失值的数值列的常用方法。
3、边缘情况处理:
当有多个列缺失值数量相同时(如两列均有 3 个缺失值),会同时删除这些列。
if not miss_counts.empty 确保无缺失值时不会报错。

# 用均值填充 NumRoos 列的缺失值

inputs['NumRoos'] = inputs['NumRoos'].fillna(inputs['NumRoos'].mean())

inputs['NumRoos'].mean():计算NumRoos列的均值(结果为 3.0,因为有效数值为 2 和 4)。
.fillna(...):将NumRoos列的缺失值(NaN)填充为均值 3.0。

1.2、执行结果

2、转换为张量格式

现在inputsoutputs中的所有条目都是数值类型,它们可以转换为张量格式。

2.1、代码

import torch
print("\n转换成张量数据:")
x = torch.tensor(inputs.to_numpy(dtype=float))
print(x)
y = torch.tensor(outputs.to_numpy(dtype=float))
print(y)

2.2、执行结果

  • pandas软件包是Python中常用的数据分析工具中,pandas可以与张量兼容。

  • pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。

http://www.lryc.cn/news/2402334.html

相关文章:

  • 在不同型号的手机或平板上后台运行Aidlux
  • 【SSM】SpringBoot学习笔记1:SpringBoot快速入门
  • 1.企业可观测性监控三大支柱及开源方案的横评对比
  • Neo4j图数据库管理:原理、技术与最佳实践
  • Elasticsearch中的地理空间(Geo)数据类型介绍
  • [论文阅读] 软件工程 | 如何挖掘可解释性需求?三种方法的深度对比研究
  • 双空间知识蒸馏用于大语言模型
  • OpenCV CUDA模块特征检测------角点检测的接口createMinEigenValCorner()
  • Git 提交备注应该如何规范
  • 青少年编程与数学 02-020 C#程序设计基础 17课题、WEB与移动开发
  • Qt OpenGL 实现交互功能(如鼠标、键盘操作)
  • 【Go语言基础【3】】变量、常量、值类型与引用类型
  • 8天Python从入门到精通【itheima】-69~70(字符串的常见定义和操作+案例练习)
  • 在 Linux 中查看文件并过滤空行
  • GC1809:高性能音频接收与转换芯片
  • 项目实战——C语言扫雷游戏
  • 【Java】CopyOnWriteArrayList
  • 【JS进阶】ES6 实现继承的方式
  • mac 电脑Pycharm ImportError: No module named pip
  • C#入门学习笔记 #8(委托)
  • CSS 3D 变换中z-index失效问题
  • Vue3 中使用 i18n
  • vue:当前对象添加对应值
  • Tailwind CSS 实战:基于 Kooboo 构建 AI 对话框页面(七):消息框交互功能添加
  • JavaScript 核心原理深度解析-不停留于表面的VUE等的使用!
  • 【计算机网络】网络层IP协议与子网划分详解:从主机通信到网络设计的底层逻辑
  • 基于WSL搭建Ubnutu 20.04.6 LTS(二)-部署Docker环境
  • 【图像处理入门】6. 频域图像处理:傅里叶变换与滤波的奥秘
  • 基于开源AI智能名片链动2+1模式S2B2C商城小程序的生态农庄留存运营策略研究
  • Jenkins实现自动化部署Springboot项目到Docker容器(Jenkinsfile)