当前位置: 首页 > article >正文

【搭建 Transformer】

搭建 Transformer 的基本步骤

Transformer 是一种基于自注意力机制的深度学习模型,广泛应用于自然语言处理任务。以下为搭建 Transformer 的关键步骤和代码示例。

自注意力机制

自注意力机制是 Transformer 的核心,计算输入序列中每个元素与其他元素的关联度。公式如下:
$$ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$
其中,$Q$ 为查询矩阵,$K$ 为键矩阵,$V$ 为值矩阵,$d_k$ 为键的维度。

import torch
import torch.nn as nnclass SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsself.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = nn.Linear(embed_size, embed_size)def forward(self, values, keys, queries, mask):N = queries.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]values = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = queries.reshape(N, query_len, self.heads, self.head_dim)energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])if mask is not None:energy = energy.masked_fill(mask == 0, float("-1e20"))attention = torch.softmax(energy / (self.embed_size ** (0.5)), dim=3)out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.embed_size)return self.fc_out(out)

多头注意力

多头注意力通过并行计算多个自注意力头,增强模型的表达能力。

class MultiHeadAttention(nn.Module):def __init__(self, embed_size, heads):super(MultiHeadAttention, self).__init__()self.attention = SelfAttention(embed_size, heads)self.norm = nn.LayerNorm(embed_size)self.dropout = nn.Dropout(0.1)def forward(self, x, mask):attention = self.attention(x, x, x, mask)x = self.dropout(self.norm(attention + x))return x

前馈神经网络

前馈神经网络用于进一步处理自注意力层的输出。

class FeedForward(nn.Module):def __init__(self, embed_size, ff_dim):super(FeedForward, self).__init__()self.ff = nn.Sequential(nn.Linear(embed_size, ff_dim),nn.ReLU(),nn.Linear(ff_dim, embed_size),)self.norm = nn.LayerNorm(embed_size)self.dropout = nn.Dropout(0.1)def forward(self, x):out = self.ff(x)x = self.dropout(self.norm(out + x))return x

编码器层

编码器层由多头注意力和前馈神经网络组成。

class EncoderLayer(nn.Module):def __init__(self, embed_size, heads, ff_dim):super(EncoderLayer, self).__init__()self.attention = MultiHeadAttention(embed_size, heads)self.ff = FeedForward(embed_size, ff_dim)def forward(self, x, mask):x = self.attention(x, mask)x = self.ff(x)return x

解码器层

解码器层包含掩码多头注意力、编码器-解码器注意力和前馈神经网络。

class DecoderLayer(nn.Module):def __init__(self, embed_size, heads, ff_dim):super(DecoderLayer, self).__init__()self.masked_attention = MultiHeadAttention(embed_size, heads)self.attention = MultiHeadAttention(embed_size, heads)self.ff = FeedForward(embed_size, ff_dim)def forward(self, x, enc_out, src_mask, trg_mask):x = self.masked_attention(x, trg_mask)x = self.attention(enc_out, src_mask)x = self.ff(x)return x

完整 Transformer

整合编码器和解码器,构建完整的 Transformer 模型。

class Transformer(nn.Module):def __init__(self,src_vocab_size,trg_vocab_size,embed_size=512,num_layers=6,heads=8,ff_dim=2048,max_len=100,):super(Transformer, self).__init__()self.encoder_embed = nn.Embedding(src_vocab_size, embed_size)self.decoder_embed = nn.Embedding(trg_vocab_size, embed_size)self.pos_embed = PositionalEncoding(embed_size, max_len)self.encoder_layers = nn.ModuleList([EncoderLayer(embed_size, heads, ff_dim) for _ in range(num_layers)])self.decoder_layers = nn.ModuleList([DecoderLayer(embed_size, heads, ff_dim) for _ in range(num_layers)])self.fc_out = nn.Linear(embed_size, trg_vocab_size)def forward(self, src, trg, src_mask, trg_mask):src_embed = self.pos_embed(self.encoder_embed(src))trg_embed = self.pos_embed(self.decoder_embed(trg))for layer in self.encoder_layers:src_embed = layer(src_embed, src_mask)for layer in self.decoder_layers:trg_embed = layer(trg_embed, src_embed, src_mask, trg_mask)return self.fc_out(trg_embed)

位置编码

位置编码用于注入序列的位置信息。

class PositionalEncoding(nn.Module):def __init__(self, embed_size, max_len):super(PositionalEncoding, self).__init__()pe = torch.zeros(max_len, embed_size)position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)div_term = torch.exp(torch.arange(0, embed_size, 2).float() * (-math.log(10000.0) / embed_size))pe[:, 0::2] = torch.sin(position * div_term)pe[:, 1::2] = torch.cos(position * div_term)self.register_buffer("pe", pe.unsqueeze(0))def forward(self, x):return x + self.pe[:, :x.shape[1], :]

http://www.lryc.cn/news/2398145.html

相关文章:

  • 自然图像数据集
  • Linux下使用nmcli连接网络
  • HCIP(BGP综合实验)
  • Attention Is All You Need (Transformer) 以及Transformer pytorch实现
  • uniapp+vue2+uView项目学习知识点记录
  • 精美的软件下载页面HTML源码:现代UI与动画效果的完美结合
  • 车载诊断架构 --- DTC消抖参数(Trip Counter DTCConfirmLimit )
  • javaEE->IO:
  • Oracle 用户/权限/角色管理
  • 使用免费wordpress成品网站模板需要注意点什么
  • 深入理解 JSX:React 的核心语法
  • 工厂方法模式深度解析:从原理到应用实战
  • TS 星际通信指南:从 TCP 到 UDP 的宇宙漫游
  • python可视化:端午假期旅游火爆原因分析
  • Missashe考研日记—Day51-Day57
  • electron-vite_18桌面共享
  • SOC-ESP32S3部分:28-BLE低功耗蓝牙
  • Git-flow流
  • VirtualBox给Rock Linux9.x配置网络
  • 知识图谱增强的大型语言模型编辑
  • .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
  • 【claude+deepseek+gemini】基于李群李代数和螺旋理论工业机器人控制系统软件UI设计
  • 阿里云国际站,如何通过代理商邀请的链接注册账号
  • 乾坤qiankun的使用
  • 从仿射矩阵得到旋转量平移量缩放量
  • Dockerfile 使用多阶段构建(build 阶段 → release 阶段)后端配置
  • Docker 镜像深度剖析:构建、管理与优化
  • 使用 Flutter 开发 App 时,想要根据 Figma 设计稿开发出响应式 UI 界面
  • Flink2.0及Flink-operater在K8S上部署
  • PH热榜 | 2025-06-03