当前位置: 首页 > article >正文

FastAPI+Pyomo实现线性回归解决饮食问题

      之前在 FastAPI介绍-CSDN博客 中介绍过FastAPI,在 Pyomo中线性规划接口的使用-CSDN博客  中使用Pyomo解决饮食问题,这里将两者组合,即FastAPI在服务器端启动,通过Pyomo实现线性回归;客户端通过浏览器获取饮食的最优解。

      这里服务器端的diet.json是已存在的,后期调整为从客户端传过来,以及其它可变参数也从客户端通过json格式传给服务器端。

      实现如下:

from fastapi import FastAPI
from pyomo.environ import *
import mathdef parse_json(file):model = ConcreteModel()data = DataPortal()data.load(filename=file)model.F = Set(initialize=data['sets']['F'])model.N = Set(initialize=data['sets']['N'])model.c = Param(model.F, initialize=data['params']['c'], within=PositiveReals)def parse_a(model, food, nutr):return data['params']['a'][food][nutr]model.a = Param(model.F, model.N, initialize=parse_a, within=NonNegativeReals)model.V = Param(model.F, initialize=data['params']['V'], within=PositiveReals)model.Nmin = Param(model.N, initialize=data['params']['Nmin'], within=NonNegativeReals, default=0.0)def parse_Nmax(model, nutr):val = data['params']['Nmax'][nutr]return val if val != "inf" else math.inf model.Nmax = Param(model.N, initialize=parse_Nmax, within=NonNegativeReals)model.Vmax = Param(initialize=data['params']['Vmax'], within=PositiveReals)return modeldef linear_programming_diet(file, number):model = parse_json(file)model.x = Var(model.F, within=NonNegativeIntegers)model.y = Var(model.F, within=Binary)model.cost = Objective(expr=sum(model.c[i]*model.x[i] for i in model.F), sense=minimize)def nutrient_rule(model, j):value = sum(model.a[i,j]*model.x[i] for i in model.F)return inequality(model.Nmin[j], value, model.Nmax[j])model.nutrient_limit = Constraint(model.N, rule=nutrient_rule)def volume_rule(model):return sum(model.V[i]*model.x[i] for i in model.F) <= model.Vmaxmodel.volume = Constraint(rule=volume_rule)def select_rule(model):return sum(model.y[i] for i in model.F) == numbermodel.select = Constraint(rule=select_rule)def linking_upper_rule(model, f):return model.x[f] <= model.y[f] * 1e6model.linking_upper = Constraint(model.F, rule=linking_upper_rule)def linking_lower_rule(model, f):return model.x[f] >= model.y[f]model.linking_lower = Constraint(model.F, rule=linking_lower_rule)solver = SolverFactory('glpk')results = solver.solve(model)if results.solver.termination_condition != TerminationCondition.optimal:return {"result":"no optimal solution"}results = {}results["total const"] = f"{value(model.cost):.2f}"foods = {}count = 0for f in model.F:v = int(value(model.x[f]))if v != 0:foods[f] = vcount += 1results["selected food"] = foodsif count != number:return {"result":"solution result is wrong, number of food types does not match"}nutrients = {}	for n in model.N:actual = sum(value(model.a[f,n] * model.x[f]) for f in model.F)nutrients[n] = f"{actual:.2f}"results["nutrients"] = nutrientsreturn resultsapp = FastAPI()@app.get("/diet")
def diet_optimization():return linear_programming_diet("../test_data/diet.json", 5)

      通过以下命令启动:

fastapi dev test_fastapi_pyomo.py

      在浏览器中输入:http://127.0.0.1:8000/diet ,结果如下图所示:

      GitHub:https://github.com/fengbingchun/Python_Test

http://www.lryc.cn/news/2396789.html

相关文章:

  • 16.FreeRTOS
  • Redis最佳实践——购物车优化详解
  • 【计算机网络】传输层UDP协议
  • 安全漏洞修复导致SpringBoot2.7与Springfox不兼容
  • 从法律层面剖析危化品证书:两证一证背后的安全逻辑
  • C语言——获取变量所在地址(uint8和uint32的区别)
  • 2 Studying《Effective STL》
  • 深入理解复数加法与乘法:MATLAB演示
  • 【设计模式-3.6】结构型——桥接模式
  • 【前端】性能优化篇
  • 【redis实战篇】第六天
  • 力扣题解654:最大二叉树
  • 手写ArrayList和LinkedList
  • Android bindservice绑定服务,bindServiceAsUser补充
  • [蓝桥杯]交换次数
  • 95套HTML高端大数据可视化大屏源码分享
  • 系统架构设计综合知识与案例分析
  • scale up 不能优化 TCP 聚合性能
  • Python-matplotlib库之核心对象
  • Linux 脚本文件编辑(vim)
  • 学习BI---基本操作---数据集操作
  • 初学大模型部署以及案例应用(windows+wsl+dify+mysql+Ollama+Xinference)
  • AI Agent企业级生产应用全解析
  • RocketMQ 学习
  • 【前端】html2pdf实现用前端下载pdf
  • Redis部署架构详解:原理、场景与最佳实践
  • 前端开发知识体系全景指南
  • C++哈希表:unordered系列容器详解
  • vue-13(延迟加载路由)
  • pom.xml 文件中配置你项目中的外部 jar 包打包方式