当前位置: 首页 > article >正文

Vert.x学习笔记-EventLoop与Context的关系


Vert.x学习笔记

      • 1. EventLoop 的核心作用
      • 2. Context 的核心作用
      • 3. EventLoop 与 Context 的关系
        • 1. 事件循环(EventLoop)的核心职责
        • 2. 上下文(Context)的核心职责
        • 3. 事件循环与上下文的关系
          • (1)一对一绑定
          • (2)任务调度协作
          • (3)线程安全保障
        • 4. 关键点总结
        • 5. 代码示例
        • 6. 总结
      • 4. 关键点总结
      • 5. 代码示例
        • 输出示例:
      • 6. 总结


在 Vert.x 中,EventLoop(事件循环)与 Context(上下文)是紧密关联的核心组件,它们共同协作以实现高效、非阻塞的异步编程模型。

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站


在这里插入图片描述


1. EventLoop 的核心作用

  • 事件驱动:EventLoop 是 Vert.x 中处理 I/O 事件的核心机制,负责监听网络事件(如套接字读写)、定时任务等,并将这些事件分发给对应的处理器(Handler)。
  • 线程绑定:每个 EventLoop 通常绑定到一个固定的线程(在 Vert.x 中称为 VertxThread),确保事件处理的线程亲和性,避免线程切换的开销。
  • 非阻塞设计:EventLoop 必须保持非阻塞状态。如果在 EventLoop 线程中执行阻塞操作(如同步 I/O、长时间计算),会导致整个 EventLoop 线程阻塞,从而影响其他事件的及时处理。

2. Context 的核心作用

  • 执行上下文:Context 是 Vert.x 中用于封装和调度异步任务的上下文环境。它负责将任务提交到正确的线程(EventLoop 或 Worker 线程)中执行。
  • 线程隔离:Context 确保同一 Verticle 的所有事件处理逻辑在同一个线程(EventLoop 线程)中执行,避免多线程竞争问题。
  • 任务调度:Context 提供了 runOnContextexecuteBlocking 等方法,用于将任务提交到当前 Context 关联的线程中执行。

3. EventLoop 与 Context 的关系

  • 一对一绑定
    每个 Verticle 实例在部署时会被分配到一个 EventLoop,并绑定到一个对应的 Context。这个 Context 封装了该 Verticle 的所有事件处理逻辑,并确保这些逻辑在同一个 EventLoop 线程中执行。

  • 任务调度
    当 Verticle 中触发一个事件(如 HTTP 请求到达)时,Vert.x 会将该事件的处理任务提交到对应的 Context 中。Context 会将任务调度到绑定的 EventLoop 线程中执行。

  • 避免阻塞
    如果 Verticle 中需要执行阻塞操作(如数据库查询),可以通过 Context 的 executeBlocking 方法将任务提交到 Worker 线程池中执行,避免阻塞 EventLoop 线程。


在 Vert.x 中,事件循环(EventLoop)上下文(Context) 是紧密协作的核心组件,它们共同构成了 Vert.x 异步编程模型的基础。以下是它们之间关系的详细解析:


1. 事件循环(EventLoop)的核心职责
  • 事件处理引擎:EventLoop 是 Vert.x 中负责监听和处理 I/O 事件(如网络请求、定时任务等)的核心机制。它基于非阻塞 I/O 模型,通过事件驱动的方式处理高并发请求。
  • 线程绑定:每个 EventLoop 通常绑定到一个固定的线程(VertxThread),确保事件处理的线程亲和性。这种设计避免了线程切换的开销,提高了性能。
  • 非阻塞要求:EventLoop 线程必须保持非阻塞状态。如果在 EventLoop 线程中执行阻塞操作(如同步 I/O、长时间计算),会导致整个 EventLoop 线程阻塞,从而影响其他事件的及时处理。

2. 上下文(Context)的核心职责
  • 执行环境封装:Context 是 Vert.x 中用于封装和调度异步任务的上下文环境。它负责将任务提交到正确的线程(EventLoop 线程或 Worker 线程)中执行。
  • 线程隔离与亲和性:Context 确保同一 Verticle 的所有事件处理逻辑在同一个线程(EventLoop 线程)中执行,避免多线程竞争问题。这种线程亲和性是 Vert.x 高性能的关键。
  • 任务调度:Context 提供了 runOnContextexecuteBlocking 等方法,用于将任务提交到当前 Context 关联的线程中执行。

3. 事件循环与上下文的关系
(1)一对一绑定
  • Verticle 与 Context 的绑定
    每个 Verticle 实例在部署时会被分配到一个 Context。这个 Context 封装了该 Verticle 的所有事件处理逻辑,并确保这些逻辑在同一个线程中执行。
  • Context 与 EventLoop 的绑定
    每个 Context 通常绑定到一个 EventLoop 线程(即 Context 的 owner() 方法返回的线程)。这意味着同一 Verticle 的所有事件处理逻辑都会在同一个 EventLoop 线程中执行。
(2)任务调度协作
  • 非阻塞任务
    当 Verticle 中触发一个事件(如 HTTP 请求到达)时,Vert.x 会将该事件的处理任务提交到对应的 Context 中。Context 会将任务调度到绑定的 EventLoop 线程中执行。
  • 阻塞任务
    如果 Verticle 中需要执行阻塞操作(如数据库查询),可以通过 Context 的 executeBlocking 方法将任务提交到 Worker 线程池中执行,避免阻塞 EventLoop 线程。
(3)线程安全保障
  • 线程亲和性
    由于 Context 确保同一 Verticle 的所有事件处理逻辑在同一个 EventLoop 线程中执行,因此无需显式使用同步机制(如锁)来保护共享数据,从而简化了编程模型。
  • 避免多线程竞争
    Context 将任务隔离到不同的线程中执行(EventLoop 线程或 Worker 线程),避免了多线程竞争问题,提高了程序的稳定性和性能。

4. 关键点总结
  • 线程绑定关系
    每个 Verticle 实例绑定到一个 Context,每个 Context 绑定到一个 EventLoop 线程。这种层级关系确保了线程亲和性和非阻塞设计。
  • 任务调度机制
    Context 负责将任务提交到正确的线程中执行。非阻塞任务在 EventLoop 线程中执行,阻塞任务在 Worker 线程中执行。
  • 性能与稳定性
    通过线程亲和性和任务隔离,Vert.x 实现了高并发、低延迟的异步编程模型,同时避免了多线程竞争问题。

5. 代码示例

以下是一个简单的 Vert.x 示例,展示了 EventLoop 和 Context 的协作:

import io.vertx.core.AbstractVerticle;
import io.vertx.core.Context;
import io.vertx.core.Vertx;
import io.vertx.core.eventloop.EventLoop;public class ExampleVerticle extends AbstractVerticle {@Overridepublic void start() {// 获取当前 Verticle 的 ContextContext context = vertx.getOrCreateContext();// 获取绑定的 EventLoopEventLoop eventLoop = context.owner();System.out.println("Current thread: " + Thread.currentThread().getName());System.out.println("Is EventLoop thread: " + context.isOnEventLoopThread());// 在 EventLoop 线程中执行任务context.runOnContext(v -> {System.out.println("Running on EventLoop thread: " + Thread.currentThread().getName());});// 执行阻塞操作(通过 Worker 线程)context.executeBlocking(promise -> {// 模拟阻塞操作try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}promise.complete("Blocking operation completed");}, res -> {System.out.println("Result: " + res.result());});}public static void main(String[] args) {Vertx vertx = Vertx.vertx();vertx.deployVerticle(new ExampleVerticle());}
}

6. 总结
  • 事件循环(EventLoop) 是 Vert.x 中处理 I/O 事件的核心线程,负责事件分发和非阻塞任务调度。
  • 上下文(Context) 是 Vert.x 中封装和调度异步任务的上下文环境,确保任务在正确的线程中执行。
  • 关系总结
    每个 Verticle 实例绑定到一个 Context,每个 Context 绑定到一个 EventLoop 线程。Context 负责将任务调度到绑定的 EventLoop 线程或 Worker 线程中执行,确保线程亲和性和非阻塞设计。

通过这种设计,Vert.x 实现了高并发、低延迟的异步编程模型,非常适合构建高性能的网络应用。


4. 关键点总结

  • 线程亲和性
    EventLoop 和 Context 共同确保同一 Verticle 的所有事件处理逻辑在同一个线程中执行,避免线程切换的开销和多线程竞争问题。

  • 非阻塞设计
    EventLoop 必须保持非阻塞状态,所有阻塞操作必须通过 Context 提交到 Worker 线程池中执行。

  • 任务隔离
    Context 将任务隔离到不同的线程中执行(EventLoop 线程或 Worker 线程),确保高并发场景下的性能和稳定性。


5. 代码示例

以下是一个简单的 Vert.x 示例,展示了 EventLoop 和 Context 的协作:

import io.vertx.core.AbstractVerticle;
import io.vertx.core.Context;
import io.vertx.core.Vertx;
import io.vertx.core.eventloop.EventLoop;public class ExampleVerticle extends AbstractVerticle {@Overridepublic void start() {// 获取当前 Verticle 的 ContextContext context = vertx.getOrCreateContext();// 获取绑定的 EventLoopEventLoop eventLoop = context.owner();System.out.println("Current thread: " + Thread.currentThread().getName());System.out.println("Is EventLoop thread: " + context.isOnEventLoopThread());// 在 EventLoop 线程中执行任务context.runOnContext(v -> {System.out.println("Running on EventLoop thread: " + Thread.currentThread().getName());});// 执行阻塞操作(通过 Worker 线程)context.executeBlocking(promise -> {// 模拟阻塞操作Thread.sleep(1000);promise.complete("Blocking operation completed");}, res -> {System.out.println("Result: " + res.result());});}public static void main(String[] args) {Vertx vertx = Vertx.vertx();vertx.deployVerticle(new ExampleVerticle());}
}
输出示例:
Current thread: vert.x-eventloop-thread-0
Is EventLoop thread: true
Running on EventLoop thread: vert.x-eventloop-thread-0
Result: Blocking operation completed
  • 解释
    • start() 方法在 EventLoop 线程中执行。
    • context.runOnContext 提交的任务也在同一个 EventLoop 线程中执行。
    • context.executeBlocking 提交的任务在 Worker 线程中执行(输出中未显示 Worker 线程名,但实际是异步的)。

6. 总结

  • EventLoop 是 Vert.x 中处理 I/O 事件的核心线程,负责事件分发和非阻塞任务调度。
  • Context 是 Vert.x 中封装和调度异步任务的上下文环境,确保任务在正确的线程中执行。
  • EventLoop 和 Context 的关系
    每个 Verticle 实例绑定到一个 EventLoop 和一个 Context,Context 负责将任务调度到绑定的 EventLoop 线程或 Worker 线程中执行,确保线程亲和性和非阻塞设计。

通过这种设计,Vert.x 实现了高并发、低延迟的异步编程模型,非常适合构建高性能的网络应用。


Vert.x学习笔记-什么是Handler

spring中的@EnableAutoConfiguration注解详解

Vert.x学习笔记-什么是EventLoop

http://www.lryc.cn/news/2396067.html

相关文章:

  • 2025030给荣品PRO-RK3566开发板单独升级Android13的boot.img
  • 由enctype-引出post与get的关系,最后深究至请求/响应报文
  • 排序算法衍生问题
  • Mac电脑上本地安装 redis并配置开启自启完整流程
  • STP(生成树协议)原理与配置
  • 搭建基于VsCode的ESP32的开发环境教程
  • 【MFC】初识MFC
  • C++.二分法教程
  • 如何通过数据分析优化项目决策
  • 2024年数维杯国际大学生数学建模挑战赛B题空间变量协同估计方法研究解题全过程论文及程序
  • leetcode hot100刷题日记——34.将有序数组转换为二叉搜索树
  • thinkphp 5.1 部分知识记录<一>
  • RAG:面向知识密集型自然语言处理任务的检索增强生成
  • MVVM、MVC的区别、什么是MVVM
  • 网页自动化部署(webhook方法)
  • 线性代数入门:轻松理解二阶与三阶行列式的定义与理解
  • AU6825集成音频DSP的2x32W数字型ClaSSD音频功率放大器(替代TAS5825)
  • 华为云Flexus+DeepSeek征文|DeepSeek-V3/R1商用服务体验全流程
  • Go语言的原子操作
  • Visual Studio 2022 插件推荐
  • 【深度学习-pytorch篇】3. 优化器实现:momentum,NAG,AdaGrad,RMSProp,Adam
  • C# NX二次开发-查找连续倒圆角面
  • 今天遇到的bug
  • Go语言字符串类型详解
  • 长安链智能合约命令解析(全集)
  • 一、OpenCV的基本操作
  • 裂缝仪在线监测装置:工程安全领域的“实时守卫者”
  • 【论文精读】2024 ECCV--MGLD-VSR现实世界视频超分辨率(RealWorld VSR)
  • SpringBoot简单体验
  • 【系统架构设计师】2025年上半年真题论文回忆版: 论系统负载均衡设计方法(包括解题思路和参考素材)