当前位置: 首页 > article >正文

ABP VNext + Apache Flink 实时流计算:打造高可用“交易风控”系统

ABP VNext + Apache Flink 实时流计算:打造高可用“交易风控”系统 🌐


📚 目录

  • ABP VNext + Apache Flink 实时流计算:打造高可用“交易风控”系统 🌐
    • 一、背景🚀
    • 二、系统整体架构 🏗️
    • 三、实战展示 🛠️:交易行为告警系统
      • 3.1 ABP 采集交易事件 📝
        • CAP + Outbox 配置示例 💼
      • 3.2 Flink CEP 模式与 Exactly-Once ⚡
      • 3.3 Redis Stream + SignalR 实时推送 🔔
    • 四、生产级部署和监控 📈
    • 五、自动化测试 🧪


一、背景🚀

在金融 💰、电商 🛒、IoT 🌐 等高频交互系统中,越来越多的场景需要“实时发现问题并响应”。


二、系统整体架构 🏗️

Publish Event
消费 Transaction
写入警报
推送警报
读取警报
实时推送
ABP VNext API
Kafka: transactions
Flink CEP Job
PostgreSQL Sink
Redis Stream
RiskAlertWorker
SignalR Hub

💡 图示展示了各组件之间的数据流向,实现消息解耦和高可用。


三、实战展示 🛠️:交易行为告警系统

3.1 ABP 采集交易事件 📝

using System;
using System.Threading.Tasks;
using Microsoft.Extensions.Logging;
using Volo.Abp.EventBus;
using Volo.Abp.EventBus.Distributed;public class TransactionCreatedDomainEvent : DomainEvent
{public Guid UserId { get; set; }public decimal Amount { get; set; }public string Location { get; set; }
}public class TransactionCreatedHandler : IDistributedEventHandler<TransactionCreatedDomainEvent>
{private readonly IDistributedEventBus _eventBus;private readonly ILogger<TransactionCreatedHandler> _logger;public TransactionCreatedHandler(IDistributedEventBus eventBus,ILogger<TransactionCreatedHandler> logger){_eventBus = eventBus;_logger = logger;}public async Task HandleEventAsync(TransactionCreatedDomainEvent eventData){var eto = new TransactionCreatedEto{UserId = eventData.UserId,Amount = eventData.Amount,Location = eventData.Location,OccurredAt = Clock.Now};try{await _eventBus.PublishAsync(eto);}catch (Exception ex){_logger.LogError(ex, "发布交易事件失败:{UserId}", eventData.UserId);throw;}}
}
CAP + Outbox 配置示例 💼
// appsettings.json
"Cap": {"UseEntityFramework": true,"UseDashboard": true,"Producer": {"Kafka": { "Servers": "localhost:9092" }},"Outbox": { "TableName": "CapOutboxMessages" }
}

3.2 Flink CEP 模式与 Exactly-Once ⚡

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.api.CheckpointingMode
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.flink.api.common.eventtime._
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend
import org.apache.flink.cep.scala.pattern.Pattern
import org.apache.flink.cep.scala.CEP
import java.time.Durationval env = StreamExecutionEnvironment.getExecutionEnvironment
env.enableCheckpointing(10000)
env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
env.setStateBackend(new RocksDBStateBackend("file:///flink-checkpoints"))
env.getCheckpointConfig.setExternalizedCheckpointCleanup(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)val watermarkStrategy = WatermarkStrategy.forBoundedOutOfOrderness[Transaction](Duration.ofSeconds(5)).withTimestampAssigner((event, _) => event.timestamp.toEpochMilli)val stream = env.addSource(new FlinkKafkaConsumer[Transaction]("transactions", deserializer, props)).assignTimestampsAndWatermarks(watermarkStrategy)val pattern = Pattern.begin[Transaction]("first").where(_.amount > 10000).next("second").where(new IterativeCondition[Transaction] {override def filter(event: Transaction, ctx: IterativeCondition.Context[Transaction]) = {val first = ctx.getEventsForPattern("first").iterator().next()event.location != first.location}}).within(Time.minutes(5))pattern.handleTimeout(new PatternTimeoutFunction[Transaction, Unit] {override def timeout(map: java.util.Map[String, java.util.List[Transaction]], timestamp: Long, out: Collector[Unit]): Unit = {// 超时清理逻辑}
}, Time.minutes(5))
ABP API Kafka Flink Redis Worker SignalR 发布交易事件 消费并处理流 推送警报 StreamReadGroup SignalR 推送 ABP API Kafka Flink Redis Worker SignalR

💡 建议全链路使用 Schema Registry 管理消息格式,防止兼容性问题。


3.3 Redis Stream + SignalR 实时推送 🔔

using System;
using System.Text.Json;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using StackExchange.Redis;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.SignalR;public class RiskAlertWorker : BackgroundService
{private readonly IConnectionMultiplexer _redis;private readonly IHubContext<RiskAlertHub> _hubContext;private readonly ILogger<RiskAlertWorker> _logger;public RiskAlertWorker(IConnectionMultiplexer redis,IHubContext<RiskAlertHub> hubContext,ILogger<RiskAlertWorker> logger){_redis = redis;_hubContext = hubContext;_logger = logger;}protected override async Task ExecuteAsync(CancellationToken stoppingToken){var db = _redis.GetDatabase();try { await db.StreamCreateConsumerGroupAsync("risk-alerts", "alert-group", "$", true); }catch { /* 忽略 BUSYGROUP */ }int backoff = 1000;while (!stoppingToken.IsCancellationRequested){try{var entries = await db.StreamReadGroupAsync("risk-alerts", "alert-group", "consumer-1",count: 10, flags: CommandFlags.Block(5000));foreach (var entry in entries){var alert = JsonSerializer.Deserialize<RiskEventDto>(entry["data"]!);await _hubContext.Clients.Group(alert.UserId.ToString()).SendAsync("ReceiveAlert", alert, stoppingToken);await db.StreamAcknowledgeAsync("risk-alerts", "alert-group", entry.Id);}backoff = 1000;}catch (Exception ex){_logger.LogError(ex, "处理 Redis 告警失败");await Task.Delay(backoff, stoppingToken);backoff = Math.Min(backoff * 2, 16000);}}}
}[Authorize]
public class RiskAlertHub : Hub { }

四、生产级部署和监控 📈

组件推荐配置
ABP 后端Pod 存活/就绪探针 ✅ + HTTPS 🔒 + Serilog→Elasticsearch Sink 📝 + CAP Outbox
Kafkaenable.idempotence=true 🔁, acks=all ✅, TLS/SASL 🔐
FlinkRocksDBStateBackend ⚙️ + EXACTLY_ONCE ⚡ + State TTL 🕒 + HA 🌟
RedisRedis Cluster 🔄 + AOF 📝 + ACL 🔑 + 阻塞消费 ⏳
PostgreSQL主从流复制 🛠️ + WAL 日志 📜 + TimescaleDB 插件 📊
SignalRAzure SignalR ☁️ / Redis Backplane 🔄 + JWT 鉴权 🔏
# Flink YAML 示例
state.backend: rocksdb
checkpointing:interval: 10smode: EXACTLY_ONCEexternalized-checkpoint-retention: RETAIN_ON_CANCELLATION
# Flink Prometheus Reporter
metrics.reporters: prom
metrics.reporter.prom.class: org.apache.flink.metrics.prometheus.PrometheusReporter
metrics.reporter.prom.port: 9250

📊 在 Grafana 中可视化:Kafka TPS、Flink 延迟分位、Redis 消费速率、ABP 请求成功率/错误率。


五、自动化测试 🧪

// Testcontainers 启动依赖
var kafka = new KafkaContainer().StartAsync().GetAwaiter().GetResult();
var redis = new RedisContainer().StartAsync().GetAwaiter().GetResult();
var postgres = new PostgreSqlContainer().StartAsync().GetAwaiter().GetResult();// 注入到 ABP 测试模块
context.Services.Configure<CapOptions>(opts => {opts.ProducerConnectionString = kafka.GetBootstrapAddress();opts.OutboxTableName = "CapOutboxMessages";
});// Flink MiniCluster
var flinkCluster = new MiniClusterWithClientResource(new MiniClusterResourceConfiguration.Builder().Build());
flinkCluster.Start();

http://www.lryc.cn/news/2393291.html

相关文章:

  • 前端面试题-HTML篇
  • JS数组 concat() 与扩展运算符的深度解析与最佳实践
  • 人工智能与机器学习从理论、技术与实践的多维对比
  • Netty 实战篇:手写一个轻量级 RPC 框架原型
  • 什么是 WPF 技术?什么是 WPF 样式?下载、安装、配置、基本语法简介教程
  • 亚远景-ISO 21434标准:汽车网络安全实践的落地指南
  • 【动手学深度学习】2.4. 微积分
  • 流程自动化引擎:让业务自己奔跑
  • AI炼丹日志-23 - MCP 自动操作 自动进行联网检索 扩展MCP能力
  • 用 Python 模拟雪花飘落效果
  • 基于定制开发开源AI智能名片S2B2C商城小程序的大零售渗透策略研究
  • 重拾Scrapy框架
  • Day 40
  • XPlifeapp:高效打印,便捷生活
  • 等保测评-Mysql数据库测评篇
  • CSS篇-2
  • 02.K8S核心概念
  • 一套qt c++的串口通信
  • 【高频面试题】数组中的第K个最大元素(堆、快排进阶)
  • Java互联网大厂面试:从Spring Boot到Kafka的技术深度探索
  • 基于Python的单斜式ADC建模与仿真分析
  • 笔记本电脑右下角wifi不显示,连不上网怎么办?
  • 一篇文章玩转CAP原理
  • Vue-收集表单信息
  • 私服 nexus 之间迁移 npm 仓库
  • 微服务及容器化设计--可扩展的架构设计
  • vscode开发stm32,main.c文件中出现很多报错影响开发解决日志
  • 嵌入式鸿蒙系统中水平和垂直以及图片调用方法
  • 【海康USB相机被HALCON助手连接过后,MVS显示无法连接故障。】
  • 面试大厂Java:从Spring Boot到微服务架构