当前位置: 首页 > article >正文

线性回归原理推导与应用(八):逻辑回归二分类乳腺癌数据分类

乳腺癌数据是sklearn中自带的数据集,需要通过相关特征对是否患有乳腺癌进行分类。

数据清洗与建模

首先加载相关库和相关数据

from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
import numpy as np
import pandas as pd#加载数据
bcdata = load_breast_cancer()
# 转成dataFrame格式,方便查看
df_data = pd.DataFrame(bcdata.data, columns=bcdata.feature_names)
df_data['targe'] = bcdata.target
df_data.head()

通过运行的结果可以看出这个数据集有30个自变量,包括半径,紧密度,面积等相关数据,并同时包括对应指标的平均值,最大值,最小值。而target列为结果列,0 表示恶性,1 表示良性。数据集共569条记录,均没有缺失数据

接下来将数据分为测试集和训练集

from sklearn.model_selection import train_test_split
X_train,X_test,y_train, y_test=train_test_split(bcdata.data,bcdata.target,test_size=0.3)

在这里直接使用sklearn中的逻辑回归LogisticRegression()建模,其官网地址为https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html,其语法和参数为:

model = LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

对应的参数为:

  • penalty:指定惩罚(正则化项)类型,用于避免过拟合,可以是 ‘l1’、‘l2’、‘elasticnet’ 或 ‘none’。
  • C:正则化强度的倒数,较小的值指定更强的正则化。
  • fit_intercept:指定是否应该向决策函数中添加常数项(也称截距)。
  • intercept_scaling:仅在使用求解器 ‘liblinear’ 且 fit_intercept 为 True 时有用。当特征值相差很大时,此参数有助于稳定 ‘liblinear’ 的收敛。
  • class_weight:用于标示各个类别的权重,通常用于处理类别不平衡的问题。如果不设置,则所有类的权重都为 1。
  • random_state:是随机数生成器的种子。在需要重现结果的情况下用于初始化中心。
  • solver:指定在优化问题中使用的算法,如 ‘liblinear’、‘newton-cg’、‘lbfgs’、‘sag’ 和 ‘saga’。
  • max_iter:求解器内部迭代的最大次数,即优化算法的迭代次数。
  • multi_class:如果是多类(非二分类)问题,则指定用于多类策略的算法,可以是 ‘ovr’(一对剩余)或 ‘multinomial’。
  • verbose:对于某些求解器,正整数的verbose参数可以用于显示求解器中的进程信息。
  • warm_start:设为True时,使用前一个调用的解决方案作为初始化,否则,只是擦除前一个解决方案。
  • n_jobs:用于指定并行作业的数量。None意味着1,而-1意味着使用所有处理器。
  • l1_ratio:仅在penalty='elasticnet'时使用,这是Elastic-Net混合参数,其中 0 <= l1_ratio <= 1。

本例中是最简单的二分类,所以直接调用,参数直接采用默认的参数

clf = LogisticRegression()
clf.fit(X_train,y_train)

这里直接运行会发现会有一个警告:
在这里插入图片描述这是因为使用了默认的lbfgs算法且参数的迭代次数达到了限制(默认max_iter=100),但是两次迭代参数变化还是比较大,仍然没有在一个很小的阈值以下,这就叫没有收敛。

这个时候的选择有 :1.忽略, 2.增大最大迭代次数, 3.更换其他的模型或者那个参数solver, 4.将数据进行预处理,提取更有用的特征。这里重点是讲解逻辑回归的使用,所以我们直接忽略不细聊具体的参数

逻辑回归模型评价

逻辑回归模型是一个分类模型,所以采用一般的分类模型评价指标即可。常用的分类模型评价指标可参考https://blog.csdn.net/qq_42692386/article/details/147896278

这里直接使用sklearn中的score函数,对于分类任务其返回的是准确率

score=clf.score(X_test,y_test)
score#结果为0.9122807017543859

也可以直接计算准确率,和score函数结果一致

print( "模型准确率:",(clf_y_predict== y_test).sum()/len(y_test))

在这里插入图片描述

http://www.lryc.cn/news/2387293.html

相关文章:

  • Jenkins分配对应项目权限与用户管理
  • Mate桌面环境系统与终端模拟器参数配置
  • fabric 是一个开源框架,用于使用 AI 增强人类能力。它提供了一个模块化框架,用于使用一组可在任何地方使用的众包人工智能提示来解决特定问题
  • 基于PDF流式渲染的Word文档在线预览技术
  • 华为仓颉语言初识:结构体struct和类class的异同
  • 数据仓库基础知识总结
  • vue2使用element中多选组件el-checkbox-group,数据与UI更新不同步
  • linux磁盘分区及挂载、fdisk命令详解
  • anaconda 安装教程以及常用命令
  • C/C++的OpenCV的锐化
  • Eigen矩阵存储顺序以及转换
  • OpenLayers 加载ArcGIS瓦片数据
  • 2025蓝桥杯WP
  • 数字人教师:开启教育智慧革新之旅
  • Linux中Java开发、部署和运维常用命令
  • 详解srs流媒体服务器的集群
  • ubuntu22.04 安装 SecureCRT8.7.3
  • Day 37
  • libvirt设置虚拟机mtu实现原理
  • AstroNex空间任务智能控制研究与训练数据集
  • 汽车副水箱液位传感器介绍
  • Docker+MobaXterm+x11实现容器UI界面转发本地
  • IEEE出版|2025年智能制造、机器人与自动化国际学术会议 (IMRA2025)
  • EasyRTC嵌入式SDK音视频实时通话助力WebRTC技术与智能硬件协同发展
  • Higress MCP Server 安全再升级:API 认证为 AI 连接保驾护航
  • 多个vue2工程共享node_modules
  • 蓝桥杯178 全球变暖
  • 多模态理解大模型高性能优化丨前沿多模态模型开发与应用实战第七期
  • mysql 合集
  • Zustand V5教程:Vanilla Store 与 useStore 使用详解 + 实战 Demo