当前位置: 首页 > article >正文

SLOT:测试时样本专属语言模型优化,让大模型推理更精准!

SLOT:测试时样本专属语言模型优化,让大模型推理更精准!

大语言模型(LLM)在复杂指令处理上常显不足,本文提出SLOT方法,通过轻量级测试时优化,让模型更贴合单个提示。实验显示,SLOT在多个基准测试中显著提升模型性能,为大模型推理优化提供新思路。


论文标题
SLOT: Sample-specific Language Model Optimization at Test-time
来源
arXiv:2505.12392v2 [cs.CL] + https://arxiv.org/abs/2505.12392

PS: 整理了LLM、量化投资、机器学习方向的学习资料,关注同名公众号 「 亚里随笔」 即刻免费解锁

文章核心

研究背景

大型语言模型(LLMs)在文本生成、理解等任务中展现出强大通用能力,但面对复杂指令时往往表现不佳,尤其当指令在训练数据中缺乏充分覆盖时,模型易出现格式错误或逻辑偏差。例如,Qwen2.5在处理含严格格式要求的推理问题时,常因训练数据中未涉及类似规范而生成错误答案。为提升模型对个体提示的响应精度,测试时缩放(Test-Time Scaling)策略通过分配额外计算资源优化推理,但现有测试时自适应(TTA)方法存在计算开销大、监督信号设计困难等挑战,难以在保持效率的同时实现模型对复杂指令的有效适配。

研究问题

  1. 现有LLM在面对复杂指令时,因训练数据中相关样本不足,常无法正确理解和遵循指令要求,如格式规范等。

  2. 测试时自适应(TTA)方法存在计算开销大的问题,在大规模模型上进行实例级更新成本高昂。

  3. 为复杂LLM任务设计有效的监督信号是一大挑战,影响模型在测试时的优化效果。

主要贡献

1. 提出SLOT框架:这是一种新颖的测试时推理方法,通过在测试时进行少量优化步骤,更新轻量级样本专属参数向量,使模型能更精准地响应单个提示,与现有方法相比,无需对整个模型进行大量更新,参数效率高。

2. 设计轻量级参数更新机制:在输出头前的最终隐藏层添加样本专属参数向量 δ δ δ,通过缓存最后一层特征,避免了完整模型的前向和反向传播,大幅降低计算开销,实现高效自适应。

3. 广泛实验验证有效性:在多个基准和LLM上的实验表明,SLOT显著提升模型性能。例如,Qwen2.5-7B在GSM8K上准确率提升8.6%,DeepSeek-R1-Distill-Llama-70B在GPQA Diamond上取得70B级模型的SOTA准确率。

方法论精要

1. 核心算法/框架:SLOT框架包含提示阶段(Prompt Stage)和生成阶段(Generation Stage)。在提示阶段,初始化并优化样本专属参数 δ δ δ;生成阶段,重用优化后的 δ δ δ生成响应。

2. 关键参数设计原理 δ δ δ是一个轻量级参数向量,维度为 R 1 × d \mathbb{R}^{1×d} R1×d,通过在提示阶段最小化输入提示的交叉熵损失来优化。采用零初始化,确保初始时不影响基础模型,优化步骤数T通常设为3,学习率 η η η为0.01,使用AdamW优化器。

3. 创新性技术组合:将提示本身视为监督训练样本,仅在输入提示上进行优化,使模型更好地与给定指令对齐;通过在最终隐藏层添加 δ δ δ来调制输出 logits,形成Logit Modulation Vector(LMV),增强推理相关令牌的概率,抑制无关令牌。

4. 实验验证方式:使用多种LLM,包括Qwen系列、Llama系列、DeepSeek系列等,在多个基准上进行实验,如GSM8K、GPQA Diamond、C-Eval、AIME24等。对比基线为原始模型,不进行测试时自适应,通过答案准确率评估性能。

实验洞察

1. 性能优势:Qwen2.5-7B在GSM8K上准确率从57.54%提升至66.19%,提升8.6%;DeepSeek-R1-Distill-Llama-70B在GPQA Diamond上准确率达68.69%,为70B级开源模型新纪录;Qwen-7B在C-Eval的Hard子集上提升8.55%。

2. 效率突破:SLOT的计算开销可忽略,与基线相比,5步优化仅增加7.9%的推理时间。生成阶段,由于仅添加轻量级向量,生成速度稳定,不受优化步骤数影响。

3. 消融研究:对优化迭代次数T和学习率η进行消融实验,发现SLOT对超参数相对不敏感。如DeepSeek-R1-Distill-Qwen-1.5B在AIME-24上,T=4、η=0.05或T=5、η=0.05时准确率最高达40.00%,比基线提升13.33%。

http://www.lryc.cn/news/2387246.html

相关文章:

  • 《计算机组成原理》第 10 章 - 控制单元的设计
  • 【数据结构与算法】模拟
  • PyTorch入门-torchvision
  • LVS负载均衡群集技术深度解析
  • 18、Python字符串全解析:Unicode支持、三种创建方式与长度计算实战
  • 5月27日复盘-Transformer介绍
  • CSV数据处理全指南:从基础到实战
  • MyBatis-Plus一站式增强组件MyBatis-Plus-kit(更新2.0版本):零Controller也能生成API?
  • 实时数仓flick+clickhouse启动命令
  • 【Git】Commit Hash vs Change-Id
  • Netty学习专栏(六):深度解析Netty核心参数——从参数配置到生产级优化
  • 服务器磁盘按阵列划分为哪几类
  • 在WPF中添加动画背景
  • 【KWDB创作者计划】_KWDB分布式多模数据库智能交通应用——高并发时序处理与多模数据融合实践
  • Android 中的 ViewModel详解
  • Java集合框架与三层架构实战指南:从基础到企业级应用
  • 6个月Python学习计划 Day 2 - 条件判断、用户输入、格式化输出
  • 使用docker容器部署Elasticsearch和Kibana
  • 批量处理合并拆分pdf功能 OCR 准确率高 免费开源
  • Unity—lua基础语法
  • 目标检测 TaskAlignedAssigner 原理
  • Qt popup窗口半透明背景
  • 游戏:元梦之星游戏开发代码(谢苏)
  • TCP协议原理与Java编程实战:从连接建立到断开的完整解析
  • Linux的top命令使用
  • Spring Cloud Gateway 限流实践:基于 Redis 令牌桶算法的网关层流量治理
  • 可视化大屏实现全屏或非全屏
  • java8函数式接口(函数式接口的匿名实现类作为某些方法的入参)
  • linux自有服务
  • UniApp网页版集成海康视频播放器