当前位置: 首页 > article >正文

绘制音频信号的各种频谱图,包括Mel频谱图、STFT频谱图等。它不仅能够绘制频谱图librosa.display.specshow

`librosa.display.specshow` 是一个非常方便的函数,用于绘制音频信号的各种频谱图,包括Mel频谱图、STFT频谱图等。它不仅能够绘制频谱图,还能自动设置轴标签和刻度,使得生成的图像更加直观和易于理解。

### 函数签名
```python
librosa.display.specshow(data, x_coords=None, y_coords=None, x_axis=None, y_axis=None, sr=22050, hop_length=512, fmin=0, fmax=None, bins_per_octave=12, key='C:maj', ax=None, **kwargs)
```

### 参数说明
- **`data`**:二维数组,表示频谱数据。例如,`librosa.feature.melspectrogram` 或 `librosa.stft` 的输出。
- **`x_coords`**:一维数组,表示x轴的坐标。如果提供,`x_axis` 参数将被忽略。
- **`y_coords`**:一维数组,表示y轴的坐标。如果提供,`y_axis` 参数将被忽略。
- **`x_axis`**:字符串,指定x轴的类型。常见值包括:
  - `'time'`:时间轴(默认值)。
  - `'s'`:秒。
  - `'ms'`:毫秒。
  - `'lag'`:延迟轴。
  - `'lag_s'`:延迟轴(秒)。
  - `'lag_ms'`:延迟轴(毫秒)。
  - `'cqt_note'`:基于CQT的音符轴。
  - `'cqt_hz'`:基于CQT的频率轴。
  - `'chroma'`:音阶轴。
  - `'tonnetz'`:Tonnetz轴。
  - `'off'`:关闭x轴标签。
- **`y_axis`**:字符串,指定y轴的类型。常见值包括:
  - `'linear'`:线性频率轴(默认值)。
  - `'log'`:对数频率轴。
  - `'mel'`:Mel频率轴。
  - `'cqt_note'`:基于CQT的音符轴。
  - `'cqt_hz'`:基于CQT的频率轴。
  - `'chroma'`:音阶轴。
  - `'off'`:关闭y轴标签。
- **`sr`**:采样率,默认值为22050 Hz。
- **`hop_length`**:帧移,默认值为512。
- **`fmin`**:最小频率,默认值为0 Hz。
- **`fmax`**:最大频率,默认值为`None`,表示采样率的一半(Nyquist频率)。
- **`bins_per_octave`**:每八度的二进制数量,默认值为12。
- **`key`**:键名,默认值为`'C:maj'`。
- **`ax`**:`matplotlib`的轴对象,默认值为`None`。如果提供,将在指定的轴上绘制图像。
- **`**kwargs`**:其他关键字参数,将传递给`matplotlib.pyplot.imshow`。

### 返回值
- 返回一个`matplotlib.image.AxesImage`对象,表示绘制的图像。

### 示例代码
以下是一个完整的示例,展示如何使用`librosa.display.specshow`绘制Mel频谱图:

```python
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np

# 加载音频文件
y, sr = librosa.load('example.wav', sr=16000)

# 计算Mel频谱
mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128)
log_mel = librosa.power_to_db(mel, ref=np.max)

# 绘制Mel频谱图
plt.figure(figsize=(10, 4))
librosa.display.specshow(log_mel, sr=sr, x_axis='time', y_axis='mel')
plt.colorbar(label='Log Mel Spectrogram (dB)')
plt.xlabel('Time')
plt.ylabel('Mel Frequency')
plt.title('Mel Spectrogram')
plt.tight_layout()
plt.show()
```

### 详细解释

1. **加载音频文件**
   ```python
   y, sr = librosa.load('example.wav', sr=16000)
   ```
   - 使用`librosa.load`加载音频文件,`sr`表示采样率。

2. **计算Mel频谱**
   ```python
   mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128)
   log_mel = librosa.power_to_db(mel, ref=np.max)
   ```
   - 使用`librosa.feature.melspectrogram`计算Mel频谱。
   - 使用`librosa.power_to_db`将Mel频谱转换为对数尺度。

3. **绘制频谱图**
   ```python
   plt.figure(figsize=(10, 4))
   librosa.display.specshow(log_mel, sr=sr, x_axis='time', y_axis='mel')
   ```
   - 创建一个`matplotlib`图形。
   - 使用`librosa.display.specshow`绘制频谱图。`x_axis='time'`表示x轴为时间轴,`y_axis='mel'`表示y轴为Mel频率轴。

4. **添加颜色条和标签**
   ```python
   plt.colorbar(label='Log Mel Spectrogram (dB)')
   plt.xlabel('Time')
   plt.ylabel('Mel Frequency')
   plt.title('Mel Spectrogram')
   ```
   - 添加颜色条,表示频谱的对数幅度。
   - 设置x轴和y轴的标签。
   - 设置图形的标题。

5. **调整布局并显示**
   ```python
   plt.tight_layout()
   plt.show()
   ```
   - 使用`plt.tight_layout()`调整布局,避免标签和颜色条的重叠。
   - 使用`plt.show()`显示图形。

### 保存图像
如果需要将图像保存到文件中,可以使用`plt.savefig`:
```python
plt.savefig('mel_spectrogram.png')
plt.close()
```

### 总结
`librosa.display.specshow` 是一个非常强大的工具,用于绘制音频信号的各种频谱图。它不仅能够自动处理轴标签和刻度,还能通过参数灵活配置。通过结合`matplotlib`的功能,可以生成高质量的频谱图,适用于数据分析和可视化。

错误的代码,注释部分,   第一个参数需要的是  librosa.load 读取后的二维数组
而不是 经过处理后的数据,频谱数据

# 生成Mel频谱
mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=Config.n_mels,n_fft=2048, hop_length=512, power=2
)
log_mel = librosa.power_to_db(mel, ref=np.max)

def save_mel_as_image(filepath, output_dir, denoise=False):mel = audio_to_mel(filepath, denoise)"""将梅尔频谱图保存为PNG图片"""plt.figure(figsize=(10, 4))# librosa提供的功能来自动处理对数转换和轴标签# 这里不需要 ,第一个参数是原始数据,# librosa.display.specshow(mel, sr=Config.sr, x_axis='time', y_axis='mel')plt.colorbar(format='%+2.0f dB')plt.tight_layout()plt.savefig(output_dir)plt.close()

`librosa.feature.melspectrogram` 是一个用于计算Mel频谱图的函数。Mel频谱图是一种将音频信号的频谱表示在Mel频率尺度上的方法,广泛应用于音频处理和机器学习任务中。Mel频率尺度是一种非线性频率尺度,更接近人类听觉系统的感知特性。

### 函数签名
```python
librosa.feature.melspectrogram(
    y=None,
    sr=22050,
    S=None,
    n_fft=2048,
    hop_length=512,
    win_length=None,
    window='hann',
    center=True,
    pad_mode='constant',
    power=2.0,
    n_mels=128,
    fmin=0.0,
    fmax=None,
    htk=False,
    norm='slaney',
    dtype=np.float32
)
```

### 参数说明

#### 输入参数
- **`y`**:音频时间序列。如果提供了`S`,则`y`可以为`None`。
- **`sr`**:采样率,默认值为22050 Hz。
- **`S`**:频谱图(STFT)。如果提供了`S`,则`y`可以为`None`。`S`应该是通过`librosa.stft`计算得到的频谱图。
- **`n_fft`**:FFT窗口大小,默认值为2048。
- **`hop_length`**:帧移,默认值为512。
- **`win_length`**:窗口长度,默认值为`n_fft`。
- **`window`**:窗口函数,默认值为`'hann'`。
- **`center`**:是否将音频时间序列居中,默认值为`True`。
- **`pad_mode`**:填充模式,默认值为`'constant'`。
- **`power`**:功率,默认值为2.0。表示频谱图的功率,通常为2(能量谱)或1(幅度谱)。

#### Mel滤波器参数
- **`n_mels`**:Mel频带的数量,默认值为128。
- **`fmin`**:最小频率,默认值为0.0 Hz。
- **`fmax`**:最大频率,默认值为`None`,表示采样率的一半(Nyquist频率)。
- **`htk`**:是否使用HTK算法计算Mel滤波器,默认值为`False`。
- **`norm`**:归一化方式,默认值为`'slaney'`。可以设置为`None`或`'slaney'`。
- **`dtype`**:数据类型,默认值为`np.float32`。

### 返回值
- 返回一个二维数组,表示Mel频谱图。其形状为`(n_mels, t)`,其中`t`是时间轴的长度。

### 示例代码
以下是一个完整的示例,展示如何使用`librosa.feature.melspectrogram`计算Mel频谱图并绘制:

```python
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np

# 加载音频文件
y, sr = librosa.load('example.wav', sr=16000)

# 计算Mel频谱图
mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128)

# 将Mel频谱图转换为对数尺度
log_mel = librosa.power_to_db(mel, ref=np.max)

# 绘制Mel频谱图
plt.figure(figsize=(10, 4))
librosa.display.specshow(log_mel, sr=sr, x_axis='time', y_axis='mel')
plt.colorbar(label='Log Mel Spectrogram (dB)')
plt.xlabel('Time')
plt.ylabel('Mel Frequency')
plt.title('Mel Spectrogram')
plt.tight_layout()
plt.show()
```

### 详细解释

1. **加载音频文件**
   ```python
   y, sr = librosa.load('example.wav', sr=16000)
   ```
   - 使用`librosa.load`加载音频文件,`sr`表示采样率。

2. **计算Mel频谱图**
   ```python
   mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128)
   ```
   - 使用`librosa.feature.melspectrogram`计算Mel频谱图。`n_mels=128`表示生成128个Mel频带。

3. **转换为对数尺度**
   ```python
   log_mel = librosa.power_to_db(mel, ref=np.max)
   ```
   - 使用`librosa.power_to_db`将Mel频谱图转换为对数尺度。`ref=np.max`表示以频谱图的最大值为参考值。

4. **绘制频谱图**
   ```python
   plt.figure(figsize=(10, 4))
   librosa.display.specshow(log_mel, sr=sr, x_axis='time', y_axis='mel')
   ```
   - 创建一个`matplotlib`图形。
   - 使用`librosa.display.specshow`绘制频谱图。`x_axis='time'`表示x轴为时间轴,`y_axis='mel'`表示y轴为Mel频率轴。

5. **添加颜色条和标签**
   ```python
   plt.colorbar(label='Log Mel Spectrogram (dB)')
   plt.xlabel('Time')
   plt.ylabel('Mel Frequency')
   plt.title('Mel Spectrogram')
   ```
   - 添加颜色条,表示频谱的对数幅度。
   - 设置x轴和y轴的标签。
   - 设置图形的标题。

6. **调整布局并显示**
   ```python
   plt.tight_layout()
   plt.show()
   ```
   - 使用`plt.tight_layout()`调整布局,避免标签和颜色条的重叠。
   - 使用`plt.show()`显示图形。

### 保存图像
如果需要将图像保存到文件中,可以使用`plt.savefig`:
```python
plt.savefig('mel_spectrogram.png')
plt.close()
```

### 总结
`librosa.feature.melspectrogram` 是一个非常强大的函数,用于计算Mel频谱图。它通过Mel频率尺度将音频信号的频谱表示得更加符合人类听觉系统的感知特性。通过结合`librosa.power_to_db`和`librosa.display.specshow`,可以生成高质量的Mel频谱图,适用于音频分析和机器学习任务。

http://www.lryc.cn/news/2384556.html

相关文章:

  • Linux `>`/`>>` 重定向操作符深度解析与高阶应用指南
  • 【自定义类型-联合和枚举】--联合体类型,联合体大小的计算,枚举类型,枚举类型的使用
  • 李宏毅《深度学习》:Self-attention 自注意力机制
  • C++初阶-list的使用1
  • Linux中的tty与login之间的关系
  • Python web 开发 Flask HTTP 服务
  • 分享|16个含源码和数据集的计算机视觉实战项目
  • 二十三、面向对象底层逻辑-BeanDefinitionParser接口设计哲学
  • [Vue]路由基础使用和路径传参
  • 使用VGG-16模型来对海贼王中的角色进行图像分类
  • OSI 网络七层模型中的物理层、数据链路层、网络层
  • WooCommerce缓存教程 – 如何防止缓存破坏你的WooCommerce网站?
  • AtCoder Beginner Contest 406(ABCD)
  • 第J2周:ResNet50V2 算法实战与解析
  • Live Search API :给大模型装了一个“实时搜索引擎”的插件
  • 每天分钟级别时间维度在数据仓库的作用与实现——以Doris和Hive为例(开箱即用)
  • 虚拟机Centos7:Cannot find a valid baseurl for repo: base/7/x86_64问题解决
  • IP风险度自检,多维度守护网络安全
  • NV066NV074美光固态颗粒NV084NV085
  • C++ 日志系统实战第六步:性能测试
  • 低代码平台搭建
  • AI编程对传统软件开发的冲击和思考
  • Java桌面应用开发详解:自制截图工具从设计到打包的全流程【附源码与演示】
  • 手写一个简单的线程池
  • AI开发实习生面试总结(持续更新中...)
  • python实战:Python脚本后台运行的方法
  • siparmyknife:SIP协议渗透测试的瑞士军刀!全参数详细教程!Kali Linux教程!
  • 【Hexo】2.常用的几个命令
  • OceanBase 系统表查询与元数据查询完全指南
  • 【Java高阶面经:微服务篇】4.大促生存法则:微服务降级实战与高可用架构设计