当前位置: 首页 > article >正文

基于FPGA的电子万年历系统开发,包含各模块testbench

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

5.完整工程文件


1.课题概述

基于FPGA的电子万年历系统开发,包含各模块testbench。主要包含以下核心模块:

时钟控制模块:提供系统基准时钟和计时功能。

日历计算模块:处理年月日的计算和闰年判断。

秒表模块:实现精确到 0.01 秒的计时功能。

2.系统仿真结果

FPGA仿真测试

       当输入的i_run信号为1的时候,秒表开始运行,从上面我们可以看到最高位Num6的计数结果,其余几位由于速度很快,所以被缩小了,看不清楚,当i_set为1的时候,秒表暂停。

       这个模块主要是一个以秒为计数单位的计数器,秒计数满60,分累加1,分计数满60的时候,小时累加1,小时计数满24的时候,产生一个时钟信号,用来确定日期加1。

        这个模块主要是一个计数器,当计数器计数到24小时的时候,年月日模块计数器会自动加1,表示日期往前累积1日。

       这里我们分两个小模块来设计,一个是日月模块,一个是年模块,当计数器计数到12月31日的时候,那么年模块则进一。即年份增加一。

3.核心程序与模型

版本:vivado2022.2

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date:    14:45:46 04/09/2014 
// Design Name: 
// Module Name:    tops 
// Project Name: 
// Target Devices: 
// Tool versions: 
// Description: 
//
// Dependencies: 
//
// Revision: 
// Revision 0.01 - File Created
// Additional Comments: 
//
//
module tops(i_clk,i_rst,i_Function_Controller,i_sel,i_set,i_run,o_Num1,o_Num2,o_Num3,o_Num4,o_Num5,o_Num6,o_Num7,o_Num8);input      i_clk;
input      i_rst;
input[1:0] i_Function_Controller;
input      i_sel;
input      i_set;
input      i_run;
output[3:0]o_Num1;
output[3:0]o_Num2;
output[3:0]o_Num3;
output[3:0]o_Num4;	
output[3:0]o_Num5;
output[3:0]o_Num6;
output[3:0]o_Num7;
output[3:0]o_Num8;	wire Clock_mb;
wire Clock;clock_div clock_div_u(.i_clk    (i_clk), .i_rst    (i_rst), .i_sel    (1'b0), .o_clock1 (Clock_mb), .o_clock2 (Clock));//======================================================================
wire CLK_Year;
wire[3:0]ym_Num1;
wire[3:0]ym_Num2;
wire[3:0]ym_Num3;
wire[3:0]ym_Num4;	
wire[3:0]ym_Num5;
wire[3:0]ym_Num6;
wire[3:0]ym_Num7;
wire[3:0]ym_Num8;
year_month year_month_u(.i_clk  (CLK_Year), .i_rst  (i_rst), .i_sel  (i_sel), .i_set  (i_set), .o_Num1 (ym_Num1), .o_Num2 (ym_Num2), .o_Num3 (ym_Num3), .o_Num4 (ym_Num4), .o_Num5 (ym_Num5), .o_Num6 (ym_Num6), .o_Num7 (ym_Num7), .o_Num8 (ym_Num8));//======================================================================
wire[3:0]tm_Num1;
wire[3:0]tm_Num2;
wire[3:0]tm_Num3;
wire[3:0]tm_Num4;	
wire[3:0]tm_Num5;
wire[3:0]tm_Num6;
wire[3:0]tm_Num7;
wire[3:0]tm_Num8;
times times_u(.i_clk      (Clock), .i_rst      (i_rst), .i_run      (i_run), .i_sel      (i_sel), .i_set      (i_set), .o_Num1     (tm_Num1), .o_Num2     (tm_Num2), .o_Num3     (tm_Num3), .o_Num4     (tm_Num4), .o_Num5     (tm_Num5), .o_Num6     (tm_Num6), .o_CLK_Year (CLK_Year), .CNT        ());assign tm_Num7 = 4'd0;
assign tm_Num8 = 4'd0;//======================================================================
wire[3:0]mb_Num1;
wire[3:0]mb_Num2;
wire[3:0]mb_Num3;
wire[3:0]mb_Num4;	
wire[3:0]mb_Num5;
wire[3:0]mb_Num6;
wire[3:0]mb_Num7;
wire[3:0]mb_Num8;
miaobiao miaobiao_u(.i_clk   (Clock_mb), .i_rst   (i_rst), .i_run   (i_run), .i_pause (i_set), .i_clear (i_sel), .o_Num1  (mb_Num1), .o_Num2  (mb_Num2), .o_Num3  (mb_Num3), .o_Num4  (mb_Num4), .o_Num5  (mb_Num5), .o_Num6  (mb_Num6));
assign mb_Num7 = 4'd0;
assign mb_Num8 = 4'd0;//=====================================================================
reg[3:0]o_Num1;
reg[3:0]o_Num2;
reg[3:0]o_Num3;
reg[3:0]o_Num4;	
reg[3:0]o_Num5;
reg[3:0]o_Num6;
reg[3:0]o_Num7;
reg[3:0]o_Num8;	
always @(posedge i_clk or posedge i_rst)
beginif(i_rst)begino_Num1 <= 4'd0;o_Num2 <= 4'd0;o_Num3 <= 4'd0;o_Num4 <= 4'd0;o_Num5 <= 4'd0;o_Num6 <= 4'd0;o_Num7 <= 4'd0;o_Num8 <= 4'd0;end
else beginif(i_Function_Controller == 2'b00)begino_Num1 <= ym_Num1;o_Num2 <= ym_Num2;o_Num3 <= ym_Num3;o_Num4 <= ym_Num4;o_Num5 <= ym_Num5;o_Num6 <= ym_Num6;o_Num7 <= ym_Num7;o_Num8 <= ym_Num8;endif(i_Function_Controller == 2'b01)begino_Num1 <= tm_Num1;o_Num2 <= tm_Num2;o_Num3 <= tm_Num3;o_Num4 <= tm_Num4;o_Num5 <= tm_Num5;o_Num6 <= tm_Num6;o_Num7 <= tm_Num7;o_Num8 <= tm_Num8;			 endif(i_Function_Controller == 2'b11)begino_Num1 <= mb_Num1;o_Num2 <= mb_Num2;o_Num3 <= mb_Num3;o_Num4 <= mb_Num4;o_Num5 <= mb_Num5;o_Num6 <= mb_Num6;o_Num7 <= mb_Num7;o_Num8 <= mb_Num8;				 end				 end
endendmodule
00X6_004m

4.系统原理简介

系统顶层框图如下:

1.该系统的基本功能

时钟显示:时、分(24 小时制)

日历显示:年、月、日

秒表功能:精确到 0.01 秒,支持开始 / 暂停 / 复位

2.模式切换功能

我们的控制输入有5个脚,分析功能如下所示:

i_Function_Controller=0;显示年月日

i_sel:选择需要调整的某位数字。

i_set:计数器,调整需要调整的位置的数字。

具体调整的时候,首先选择i_sel,按键按一下,需要调整的位置会移动一次,然后移动到需要调整的位置上,然后松开i_sel,然后按下i_set,调整显示的数字。

i_run:不使用

i_Function_Controller=1;显示时间,小时,分,秒

i_sel:

i_set:

i_run:

正常工作的时候,上面三个设置分别输入0,0,1

当需要调整时间的时候,设置i_run=0,然后设置i_sel,选择对应的需要调整的数字位,然后设置i_set,设置具体的值,其中秒位置,如果设置i_set。那么秒直接清零。

注意,因为时间部分计数到24小时的时候,年月日才被加1,所以在年月日这里i_run不使用,他是靠日期模块来驱动的。

i_Function_Controller=3;秒表的控制

i_sel:清零

i_set:暂停

i_run:开始秒表计时

5.完整工程文件

v

v

http://www.lryc.cn/news/2384052.html

相关文章:

  • Leetcode刷题 | Day63_图论08_拓扑排序
  • MySQL 可观测性最佳实践
  • 系统性能分析基本概念(3) : Tuning Efforts
  • OceanBase数据库全面指南(函数篇)函数速查表
  • SpringBoot 对象转换 MapStruct
  • 计算机网络——Session、Cookie 和 Token
  • 01-jenkins学习之旅-window-下载-安装-安装后设置向导
  • Spark,SparkSQL操作Mysql, 创建数据库和表
  • AttributeError: module ‘cv2.dnn‘ has no attribute ‘DictValue‘错误解决方法
  • HarmonyOS 鸿蒙应用开发基础:@Watch装饰器详解及与@Monitor装饰器对比分析
  • 机器人拖动示教控制
  • 免费开放试乘体验!苏州金龙自动驾驶巴士即将上线阳澄数谷
  • matlab加权核范数最小化图像去噪
  • docker容器暴露端口的作用
  • 每日Prompt:像素风格插画
  • Windows逆向工程提升之二进制分析工具:HEX查看与对比技术
  • Android10如何设置ro.debuggable=1?
  • 2024游戏安全白皮书:对抗激烈!PC游戏外挂功能数增长超149%,超85%移动外挂为定制挂(附获取方式)
  • 深度解析:Spark、Hive 与 Presto 的融合应用之道
  • 12kV 环保气体绝缘交流金属封闭开关设备现场交流耐压试验规范
  • 位图算法——判断唯一字符
  • HarmonyOS 鸿蒙应用开发基础:父组件调用子组件方法的几种实现方案对比
  • 复盘20250522
  • 【UE5】环形菜单教程
  • Athena 执行引擎:在线服务计算的效率王者
  • 飞桨paddle ‘ParallelEnv‘ object has no attribute ‘_device_id‘【已解决】
  • Bert预训练任务-MLM/NSP
  • 微信小程序之Promise-Promise初始用
  • 准备好,开始构建:由 Elasticsearch 向量数据库驱动的 Red Hat OpenShift AI 应用程序
  • spring的注入方式都有什么区别